

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Next-Generation
CI/CD

Harness Special Edition

by Kenneth Hess

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Next-Generation CI/CD For Dummies®, Harness Special Edition

Published by
John Wiley & Sons, Inc.
111 River St.
Hoboken, NJ 07030-5774
www.wiley.com

Copyright © 2025 by John Wiley & Sons, Inc., Hoboken, New Jersey. All rights, including for text
and data mining, AI training, and similar technologies, are reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, The Dummies Way, Dummies.com,
Making Everything Easier, and related trade dress are trademarks or registered trademarks of
John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not
be used without written permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in
this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING
WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY
MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE
AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS
WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN
RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL
ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING
HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION
OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS
SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit be www.dummies.
com/custom-solutions. For information about licensing the For Dummies brand for products or
services, contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-394-31327-3 (pbk); ISBN 978-1-394-31328-0 (ebk); ISBN 978-1-394-31329-7 (ebk)

Publisher’s Acknowledgments

Editor: Elizabeth Kuball

Acquisitions Editor: Traci Martin

Senior Managing Editor: Rev Mengle

Client Account Manager:
Jeremith Coward

Production Editor:
Tamilmani Varadharaj

http://www.wiley.com
http://www.wiley.com/go/permissions
http://Dummies.com
mailto:info@dummies.biz
http://www.dummies.com/custom-solutions
http://www.dummies.com/custom-solutions
mailto:BrandedRights&Licenses@Wiley.com

Table of Contents iii

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
INTRODUCTION.. 1

About This Book.. 1
Foolish Assumptions... 2
Icons Used in This Book.. 2
Beyond the Book... 2

CHAPTER 1: 	Modernizing Your DevOps Processes........................... 3
Identifying Problems with Current DevOps Processes..................... 4

Maintaining security throughout the development life cycle....... 4
Increasing complexity with microservices.................................... 4
Selecting the best DevOps tools.. 5

Changing CI/CD Processes... 5
Harnessing the Power of Feature Flags.. 6

Simple UI-based feature release workflows................................. 7
Governance and verification.. 7
Integration into CI/CD... 7

CHAPTER 2: 	Optimizing Continuous Integration.............................. 9
Enhancing Speed... 9
Ensuring Security... 10
Improving the Developer Experience... 11
Managing Infrastructure Costs.. 11

CHAPTER 3: 	 Streamlining Continuous Delivery............................... 13
Explaining Continuous Delivery and Continuous Deployment..... 13
Avoiding Script Writing... 15
Automating Deployment.. 15
Implementing Progressive Delivery.. 16
Ensuring Safety.. 17
Managing Infrastructure Costs.. 17

CHAPTER 4: 	 Standardizing and Governing... 19
Using Templates and Open Policy Agent... 20
Defining the Transition from Development to QA.......................... 20

Code commit and integration.. 20
Automated testing... 21
Artifact management... 21

iv Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Environment setup and configuration.. 21
Gate checks and approvals... 21
Notification and collaboration... 21

Defining the Transition from Quality Assurance
to Production... 22

Final testing and validation... 22
Artifact preparation... 22
Approval and governance checks.. 23
Production environment setup.. 23
Deployment strategy... 23
Monitoring and alerts.. 23
Post-deployment verification... 24
Documentation and communication.. 24

Securing Your Pipelines with Role-Based Access Control.............. 24

CHAPTER 5: 	 Ten Features Shaping the Future of CI/CD............. 25
Using AI for Debugging Pipeline Issues.. 25
Using AI for Selecting the Right Tests to Run................................... 26
Automating Rollbacks... 26
Implementing Progressive Delivery.. 26
Enabling Automatic Release Verification.. 26
Integrating with GitOps Workflows... 27
Leveraging Machine Learning for Anomaly Detection................... 27
Providing Real-Time Feedback Loops... 27
Streamlining Security Compliance.. 27
Facilitating Self-Service Deployments... 27

Introduction 1

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Continuous integration/continuous delivery (CI/CD) is about
pushing frequent code changes into production via a reli-
able and consistent system of tools and procedures. It

allows incremental changes to be added to a production applica-
tion, alleviating the need to wait for a major revision, especially
when providing updates based on user feedback.

When done well, CI/CD streamlines development, reduces
software flaws and bugs, increases delivery efficiency, and lowers
testing and development costs. But CI/CD practices face hurdles,
including tool integration, infrastructure complexity, and the goal
of balancing speed with quality and security. Integrating with
various tools — such as version control, build systems, application
security tools and deployment tools — can be challenging, espe-
cially when dealing with diverse technologies or legacy systems.

This book explains how to achieve engineering excellence and
improve the developer experience using an artificial intelligence
(AI)–native software delivery platform.

About This Book
Next-Generation CI/CD For Dummies, Harness Special Edition, con-
sists of five chapters that explore the following:

»» Modernizing your DevOps processes (Chapter 1)

»» Optimizing your continuous integration efforts (Chapter 2)

»» Streamlining continuous delivery using next-generation
CI/CD (Chapter 3)

»» Standardization and governance (Chapter 4)

»» Shaping the future of CI/CD (Chapter 5)

Each chapter is written to stand on its own, so if you see a topic
that piques your interest feel free to jump ahead to that chapter.
You can read this book in any order that suits you.

2 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Foolish Assumptions
It has been said that most assumptions have outlived their use-
lessness, but I assume a few things nonetheless!

Primarily, I assume you have some experience with CI/CD as a
developer, code integrator, or operations team member. Because
you’re reading this book, I also assume you’re having a less-
than-optimal experience with your current software solution. You
could also be searching for a new approach to CI/CD — a next-
generation, AI-assisted integration and delivery platform.

If any of these assumptions describes you, this book is for you! If
none of these assumptions describes you, keep reading anyway —
it’s a great book, and you’ll expand your knowledge of next-
generation CI/CD by reading it!

Icons Used in This Book
Throughout this book, I use special icons to call attention to
important information. Here’s what to expect:

The Remember icon points out important information you
should commit to your nonvolatile memory, your gray matter, or
your noggin.

The Technical Stuff icon explains the jargon beneath the jargon
and is the stuff legends — well, legendary nerds — are made of.

Tips are appreciated, but never expected — and I sure hope you’ll
appreciate these useful nuggets of information.

These alerts point out the stuff your mother warned you about.
Well, probably not, but they do offer practical advice.

Beyond the Book
There’s only so much I can cover in this short book, so if you find
yourself at the end of this book wondering, “Where can I learn
more?” go to www.harness.io for more information.

http://www.harness.io

CHAPTER 1 Modernizing Your DevOps Processes 3

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

»» Defining CI/CD

»» Improving on current CI/CD practices

»» Leveraging AI for software delivery

»» Exploring feature flags

Modernizing Your
DevOps Processes

The primary goal of continuous integration/continuous
delivery (CI/CD) is to streamline and accelerate the software
development life cycle (SDLC). CI starts with developers

frequently integrating changes into a source code repository.
Those changes are then automatically built and tested. CD releases
new code into production.

CI/CD helps organizations avoid bugs, code failures, and secu-
rity vulnerabilities while maintaining continuous updates in the
SDLC, decreasing complexity, increasing efficiency, and stream-
lining workflows.

In this chapter, I cover the basic definition of CI/CD, current
problems with existing CI/CD technologies, using artificial intel-
ligence (AI) for software delivery, and a brief introduction to fea-
ture flags.

4 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Identifying Problems with Current
DevOps Processes

If you’ve worked in DevOps, you know that currently accepted
CI/CD strategies, solutions, and tools have many problems and
shortcomings. This section exposes the three most common
DevOps pain points and their solutions.

Maintaining security throughout
the development life cycle
Working in an organization that uses a CI/CD model can make it
challenging to deliver secure applications because of the frequency
of changes and deployments. Integrating security throughout the
development process — especially in the SDLC’s planning, analy-
sis, and design stages — is critical to delivering secure code.

The earlier in the development process you focus on security, the
better your overall application security posture will be. This is
called “shifting security left” in DevSecOps speak.

Developers can easily fix security vulnerabilities when they’re
found early and prioritized and contextualized, along with pre-
scriptive remediation guidance. Many vulnerabilities can now be
automatically remediated using AI.

Increasing complexity with
microservices
Microservices can push the limits of your pipelines because of
the velocity and independence needed to deploy successfully.
You may ask, “Why do microservices increase complexity when
they should decrease complexity?” As dependency complexity is
reduced, deployment complexity is increased.

Smaller and more granular services increase the number of
deployed services. The sheer number of deployments and man-
aging dozens or hundreds of service components makes tracking
dependencies between different services more challenging.

This explosion of microservices also elevates the complexity of
troubleshooting, monitoring, logging, and overall system health

CHAPTER 1 Modernizing Your DevOps Processes 5

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

checks. The solution is to use more robust tools that simplify cre-
ating and managing these new pipelines.

Selecting the best DevOps tools
Making a wise choice is difficult because of the complexity and
rapid service growth coupled with a competitive DevOps tools
market. The success or failure of development and deployment
is often a function of the tools an organization chooses. Select-
ing inferior or insufficient DevOps software causes developers
to create their own generally unsupportable tool suites that they
cherry-pick from various sources. This can be costly for an orga-
nization, leading to developer toil and missing product deadlines.

To overcome this challenge, DevOps teams should select an inte-
grated toolset that includes version control, CI, testing, deploy-
ment, application security testing integrations, and monitoring
capabilities. The suite should also be flexible, security-focused,
relatively simple or intuitive, and capable of integrating into your
current workflows and organizational structure.

Changing CI/CD Processes
To end the CI/CD process failure cycle, you must change your
development culture to focus on end-to-end security, continuous
testing and monitoring, and performance tracking. The short-
answer solution to resolving failures is to implement an auto-
mated testing framework.

CI enables automated builds and tests. A robust ecosystem and
various plug-ins make integrating modern testing methodologies
and new languages easy. Pipelines, such as automated builds and
tests, can be configured as code and are declarative, expressing
goals instead of lengthy scripting.

The primary practice in a CI pipeline is to automate the build
process. Within a build process, you want to ensure you’re
integrating and performing unit, functional, integration, and
security tests so that builds fail for code that doesn’t meet func-
tional requirements. Build and test automation is about inte-
grating changes early and often. This prevents maintenance
complexity on feature and main branches as developers progress
on feature development.

6 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Change isn’t easy, but moving toward a more efficient CI/CD pro-
cess is essential by automating processes that can avoid human
error, prevent vulnerabilities, and speed up delivery.

Harnessing the Power of Feature Flags
Feature flags allow organizations to deliver features faster, with
less risk. Companies constantly develop new software features for
their customers. Traditionally, these features are made available
via a software deployment and become visible to all users simul-
taneously. As a result, every time a new feature is deployed, cus-
tomers risk having a bad experience due to a poorly implemented
feature. The only way to fix the problem is to roll back to the prior
version immediately or to create a fix as soon as possible and roll
forward by deploying a new version.

The risks associated with new feature releases slow developers,
who must thoroughly validate design and implementation before
releasing. Multiple possible versions of a new feature’s look and
function often exist, and it’s up to the developer to choose and
implement one.

Sometimes, the developer’s choice isn’t the correct one. Develop-
ers often decide when to release new software features instead
of relying on business needs. Sunsetting old features introduces
risks to newer features that may depend on the old code. When
teams depend on engineering release cycles (for example, once a
month), multiple features are released simultaneously, introduc-
ing complexity and risk that can result in deployment war rooms,
large rollbacks, and dissatisfied customers.

Feature flags are used as software switches to hide or activate fea-
tures. Developers can turn features on or off without changing the
source code or deploying new code to apply or remove a feature
from a software deployment.

Feature flags are used to toggle new features on or off for a sub-
set of users for testing. However, beyond this simple use case,
advanced capabilities are available through Harness’s unique
feature flag tools.

CHAPTER 1 Modernizing Your DevOps Processes 7

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Simple UI-based feature
release workflows
Customers can create templates and processes to standardize
across feature flags with the same operational needs. Feature flags
can be included in a visual pipeline that includes steps related to
governance and verification.

Governance and verification
Customers can ensure that production pushes always meet defined
organizational standards and minimize the negative impact of any
issues in production. Harness allows customers to create controls
in their feature release process, including mandating approvals
and creating audit trails. In addition, customers can automate
service verification after a feature is live, ensuring that if an issue
occurs, the feature is turned off to minimize impact.

Integration into CI/CD
Many feature flag tools separate feature flags from the rest of the
SDLC, even though they go hand in hand with CD. This creates a
problem for customers, who inherently view feature flags as just
another stage of that life cycle (many companies even repurpose
their existing software release processes to mimic the functional-
ity of feature flags). By representing feature flags as a pipeline,
feature flag management becomes a natural step in the everyday
workflow of development teams. It’s integrated into CI/CD as a
unified pipeline.

CHAPTER 2 Optimizing Continuous Integration 9

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

»» Speeding up the process

»» Securing the process

»» Improving the developer experience

»» Keeping costs in check

Optimizing Continuous
Integration

Continuous integration (CI) is a fundamental practice in
modern software development that aims to streamline
integrating code changes from multiple developers into a

shared repository. It involves automating the build, test, and
integration of code changes regularly, ensuring that conflicts are
detected early in the process and the code base remains stable.

This chapter discusses the advantages of the CI model, including
reducing the time required to debug and troubleshoot, minimizing
risk, implementing secure practices, facilitating agile develop-
ment and collaboration, increasing efficiency, and reducing costs.

Enhancing Speed
Parallel execution of builds and tests significantly speeds up the
CI process. Instead of running tasks sequentially, multiple tests
and build jobs can be executed simultaneously, reducing the time
it takes to validate changes.

Intelligent caching strategies reduce redundant work. By cach-
ing dependencies, intermediate build outputs, and even docker

10 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

layers, the system avoids repeatedly rebuilding unchanged code
or downloading dependencies, speeding up the build process.

Speed is also increased by using machine learning (ML) to auto-
matically select the most relevant tests for a particular code
change. This reduces the overall test time by focusing on only the
necessary tests without compromising quality.

Artificial intelligence (AI) capabilities quickly identify pipeline
issues and automatically suggest remediation so that failures
do not cause long development delays. Another way to speed up
builds is by selecting infrastructure optimized for builds and not
generic infrastructure — for example, if a company is building
iOS applications, then using macOS infrastructure instead of run-
ning Mac emulators on a Windows or Linux OS infrastructure.

Ensuring Security
Integrating security checks directly into the CI pipeline allows
teams to perform security scans, such as scanning static code,
vulnerability assessments, and compliance checks, such as
ensuring artifacts have not been tampered with during the CI
process, as part of the build process. Security is addressed early in
the software development life cycle (SDLC), catching issues long
before they reach production.

With role-based access control (RBAC), access to specific actions
within the CI pipeline is based on a user’s role. This minimizes the
risk of unauthorized access to sensitive environments or actions,
enhancing overall security.

RBAC is a security model that regulates access to system resources
by assigning permissions to specific roles rather than individual
users. Roles are created based on an organization’s tasks or job
functions, and permissions are associated with them. Users are
then assigned one or more roles, and they inherit the permissions
needed to perform their specific duties through these roles.

You can enhance security with secret management tools, such as
Vault by Hashicorp or Amazon Web Services (AWS) Secrets Man-
ager, to securely manage and inject credentials, keys, and other
sensitive data into pipelines. This guarantees that secrets are
never exposed in plain text.

CHAPTER 2 Optimizing Continuous Integration 11

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The Harness platform allows for enforcing security and com-
pliance policies through Open Policy Agent (OPA) integration,
ensuring that only compliant builds are promoted to the next
pipeline stage.

Improving the Developer Experience
Careful, developer-centric design features improve a developer’s
experience, such as a user-friendly interface that abstracts away
much of the complexity of pipeline management. Developers can
focus on coding, while automation handles the details of testing,
building, and deployment.

Developers can create and manage their own pipelines using pre-
configured templates. This reduces dependency on DevOps teams
to set up and maintain CI pipelines, speeding up development
cycles and allowing for faster iterations.

Providing real-time feedback to developers through integrations
with popular collaboration tools like Slack and Microsoft Teams,
developers are notified immediately if a build or test fails, allow-
ing them to address issues quickly and continue coding without
unnecessary delays.

Selecting tools that use AI to debug failed pipelines or security
issues by analyzing logs and test results, suggesting root causes,
and providing recommendations for fixes helps developers
identify and resolve issues faster without needing deep exper-
tise in CI/CD.

Simplified pipeline management, fast feedback loops, and AI-
powered debugging work together to improve the developer expe-
rience and optimize CI.

Managing Infrastructure Costs
Almost as much as security, managing costs is everyone’s con-
cern. Although cloud infrastructure proves to be less expensive
in most use cases, those costs can quickly skyrocket if they aren’t
thoughtfully managed. Managing sprawl is one of the most time-
consuming aspects of working in and with a cloud environment.

12 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

An extremely valuable business ally is a tool suite that helps you
manage infrastructure.

In today’s competitive business environment, managing costs can
mean preventing financial losses later on.

DevOps teams need a solution that integrates with cloud platforms
to dynamically scale build resources up or down based on current
needs to ensure that teams aren’t paying for idle resources, opti-
mizing cloud spend. They need a tool that provides visibility into
the cost and usage of CI/CD resources. Teams can track how much
is spent on building infrastructure and set policies to control or
limit resource usage, avoiding unexpected cost overruns.

By leveraging cloud-based build agents that run only when needed
(that is, ephemeral build environments), you avoid the inefficien-
cies of maintaining static, always-on infrastructure. This results
in lower costs compared to traditional on-premises CI solutions.
By using the techniques mentioned earlier to speed up builds, you
can reduce the compute time and storage required for builds, low-
ering infrastructure costs. This is particularly effective for large,
complex projects with frequent build and test cycles.

Managing infrastructure costs through dynamic scaling, cost
governance, and efficient resource utilization allows teams to
deliver faster without overspending.

CHAPTER 3 Streamlining Continuous Delivery 13

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

»» Recognizing that scripting is not required

»» Focusing on automation

»» Delivering continuously

»» Guaranteeing safety

»» Reining in infrastructure costs

Streamlining
Continuous Delivery

Continuous delivery (CD) is a software development approach
that automates the entire software release process. It aims
to enable frequent and reliable software releases by ensur-

ing that code changes can be deployed to production quickly and
with minimal manual intervention. CD builds upon the founda-
tion of continuous integration (CI) and extends it further by auto-
mating the deployment and release stages.

This chapter covers delivery and deployment without complex
scripting, deployment automation, CD, safety, and managing
infrastructure costs.

Explaining Continuous Delivery and
Continuous Deployment

CD and continuous deployment are two closely related concepts in
software development that aim to streamline the release process
and deliver software more efficiently. While they share similari-
ties, there are significant differences between the two approaches.

14 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You’ll often see the CD acronym used to refer to both continuous
delivery and continuous deployment. In this book, for the sake of
clarity, we use it only to refer to continuous delivery.

Continuous deployment is an extension of CD that takes auto-
mation to the next level. In continuous deployment, every code
change that passes the automated tests is automatically deployed
to production without human intervention. This means that new
features, bug fixes, and improvements are released to users as
soon as they’re ready.

Alternatively, CD focuses on ensuring that software is always
reliable but leaves the decision of when to deploy to production
in the hands of the development team. With CD, the software is
built, tested, and packaged in an automated manner, and it can be
deployed to production at any time with minimal effort.

The main difference between CD and continuous deployment lies
in the level of automation and control over the release process:

»» Continuous deployment eliminates manual approval or
intervention, allowing faster and more frequent releases. It
requires a high level of confidence in the automated testing
and deployment processes to ensure that only stable and
reliable code reaches production.

»» CD allows the development team to choose when to deploy
the software to production. It also may include additional
manual steps, such as final user acceptance testing or
regulatory compliance checks, before releasing the software.
This gives the development team more control over the
release process and allows for a more cautious approach.

Both CD and continuous deployment rely on similar practices and
tools, such as continuous integration, automated testing, infra-
structure such as code, and deployment automation. They aim
to reduce the time and effort required to deliver software while
maintaining high quality and reliability.

The choice between CD and continuous deployment depends on
various factors, including your organization’s risk tolerance, the
complexity of the software, and the regulatory requirements.
Continuous deployment is well suited for organizations prioritiz-
ing speed and agility, while CD balances automation and control.

CHAPTER 3 Streamlining Continuous Delivery 15

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Avoiding Script Writing
A common way to set up CD systems is to use the tool as an
orchestrator that runs scripts that your team authors. However,
scripting can be labor intensive and require ongoing maintenance
for each pipeline the script has been copied to. To reduce your toil,
minimize the amount of scripting necessary.

You may prefer tools with prebuilt integrations with your deploy-
ment targets, like Kubernetes, and other DevOps tools used by
your team. Instead of writing custom scripts to integrate these
tools, users can configure them through the interface. This plug-
and-play setup eliminates the need for custom code.

A next-generation CI/CD suite provides reusable and preconfig-
ured workflows for common tasks, such as deploying applica-
tions, running tests, or rolling back failed deployments. These
workflows come with built-in logic and automation for handling
complex scenarios (for example, canary and blue-green deploy-
ments) without requiring teams to script them manually.

Leveraging machine learning (ML) to handle tasks like identify-
ing performance regressions, automating rollbacks, and selecting
optimal tests for specific changes gives you intelligent automa-
tion that reduces the need to script custom validation or monitor
logic within deployment pipelines.

Instead of manually scripting governance and compliance checks,
built-in policies offer security, compliance, and operational stan-
dards. These policies can be enforced automatically across all
pipelines without additional scripting.

Relying on these declarative and automated features significantly
reduces the need for custom scripts in the software delivery
and deployment processes, leading to faster, more reliable, and
easier-to-manage pipelines.

Automating Deployment
Automating deployments in a CD solution focuses on streamlining
the release process. Automation minimizes manual interventions,
reduces errors, and ensures consistent, reliable software delivery.

16 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Reliable software delivery is achieved through advanced automa-
tion, intelligent orchestration, and policy-driven governance, all
of which contribute to a more efficient and robust CI/CD pipeline.

Here are the top five automated deployment features, how they
work, and how they streamline CD:

»» Automating deployment workflows: Users may define
reusable deployment workflows that can be triggered
automatically when specific conditions are met.

»» Continuous verification (CV): Integrating AI-powered CV
into its automated deployment process automatically
monitors key performance indicators (KPIs), logs, and
metrics during and after a deployment to identify potential
issues, anomalies, or regressions.

»» Automated rollbacks: Built-in strategies can be triggered
based on predefined failure conditions or during the
CV process.

»» Infrastructure as code (IaC) integration: By integrating IaC
into deployment workflows, infrastructure changes, such as
scaling or configuration updates, happen in tandem with
application deployments, providing a seamless and consistent
delivery pipeline.

»» Declarative pipelines and templates: Templates enable
teams to create standardized deployment processes and
enforce best practices so that every deployment follows the
same rigorous standards, regardless of who executes the
pipeline, which reduces human error and increases ease of
management.

Implementing Progressive Delivery
Progressive delivery is incremental delivery that offers granular
control over the delivery process. Engineers can set up pipelines
to release new versions of their software initially to few users or
servers, and then progress to more.

Progressive delivery has multiple benefits, including risk reduc-
tion, an improved user experience, faster time to market, and
automated safeguards.

CHAPTER 3 Streamlining Continuous Delivery 17

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By gradually rolling out changes, developers can catch and
resolve issues early — before they impact a larger user base.
These controlled rollouts provide users a better experience using
feature flags because new features are more stable and well-
tested. Continuous delivery removes the need for major rollbacks
and decreases the occurrence of failures, which accelerates the
release cycle.

A progressive delivery model that uses AI-driven CD and auto-
mated rollbacks verifies that deployments are safe, reducing the
burden on developers and operations teams. This model enables
teams to ship software faster, with greater confidence and
lower risk. It provides a comprehensive, automated framework
for deploying updates incrementally and safely through canary
releases, feature flags, and automated rollbacks.

Intelligent monitoring, CV, and granular control make progres-
sive delivery a powerful tool for delivering smooth, low-risk
software releases.

Ensuring Safety
A streamlined CD solution ensures safety by combining advanced
automation, intelligent monitoring, built-in security features,
and policy-based governance. It minimizes the risk of failed
deployments, security breaches, and noncompliance while con-
sistently and reliably delivering applications.

AI-driven verification, automated rollbacks, and built-in security
scanning prevent faulty or insecure code from reaching produc-
tion. Role-based access control (RBAC), policy enforcement, and
templated pipelines standardize and secure deployment.

Managing Infrastructure Costs
As I explain in Chapter 2, managing infrastructure costs is an
important consideration for DevOps personnel. A next-generation
CI/CD suite provides visibility into the cost of deployments, par-
ticularly for cloud-based resources.

18 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

By analyzing usage patterns and deployment frequency, teams
can optimize resource allocation and avoid over-provisioning and
sprawl, helping manage infrastructure costs while maintaining
the speed and efficiency of automated deployments.

A common challenge is the cost of test environments. When infra-
structure provisioning is tightly integrated with CD, teams can
use short-lived, “ephemeral” test environments. When a build is
ready to be tested in a running environment, IaC is used to create
new infrastructure, the software is deployed to it, tests are run,
and then the infrastructure is deprovisioned. Although this adds
a few minutes to the test cycle for provisioning, the organization
doesn’t pay for environments that are not actively in use.

CHAPTER 4 Standardizing and Governing 19

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

»» Guaranteeing consistency
with templates

»» Committing code changes

»» Automating tests

»» Checking compliance

»» Focusing on pipeline security

Standardizing
and Governing

Standardizing and governing continuous integration/
continuous delivery (CI/CD) pipelines helps enforce consis-
tency, reliability, and security across software delivery

processes. By implementing standardized pipelines, organiza-
tions can ensure that best practices, tools, and processes are
uniformly applied across all projects and teams. Standardization
reduces the risk of errors, accelerates onboarding, and enhances
collaboration by eliminating ad-hoc workflows. It also simplifies
maintenance and troubleshooting because engineers can rely on a
consistent framework when addressing issues or updating code.

Governance promotes CI/CD pipelines’ adherence to security,
compliance, and operational policies, minimizing risks in produc-
tion environments. Through governance, organizations can man-
ually enforce policies such as role-based access control (RBAC),
security scans, and compliance audits, reducing human error and
enforcing standards, but the process should be automated. Stan-
dardization and governance help create scalable, reliable, and
secure CI/CD practices that support faster, more controlled soft-
ware releases.

20 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

This chapter covers using templates for standardization, gover-
nance, transitions from development to quality assurance (QA)
and from QA to production, and addressing security through RBAC.

Using Templates and Open Policy Agent
Templates allow teams to define common pipeline elements, such
as steps for testing, build configurations, security checks, and
deployment strategies, in a centralized and reusable format. This
ensures that all teams and projects follow the same structure and
adhere to organizational standards.

Using predefined templates, organizations can enforce specific
rules and policies, ensuring that specific security and compli-
ance checks (for example, vulnerability scanning and code quality
assessments) are automatically included in every pipeline. This
prevents teams from bypassing necessary steps, promoting con-
sistent governance across the organization.

Templates enable organizations to standardize and reuse com-
ponents across pipelines, but Open Policy Agent (OPA) provides a
flexible, declarative way to enforce governance and security poli-
cies through policy-as-code.

OPA policies can be embedded directly into templates or workflows
to enforce compliance automatically. For example, a deployment
template could include an OPA policy that checks whether secu-
rity scans have passed before allowing deployment to production.
This guarantees that every pipeline using the template adheres
to governance standards without requiring manual intervention.

Defining the Transition from
Development to QA

Six key components are required to define the transition from
development to QA in the CI/CD pipeline.

Code commit and integration
The CI pipeline is triggered when developers commit code
changes. This includes automated processes such as building the

CHAPTER 4 Standardizing and Governing 21

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

application, running unit tests, and packaging the code for fur-
ther testing. Before the transition, the code must pass through
peer reviews or automated code quality checks (for example, static
code analysis). Only approved code should proceed to the QA stage.

Automated testing
These tests check that individual components and integrations
between components work as expected. Passing these tests is
a prerequisite before the application code transitions to the QA
environment. A strategy of continuous testing with automated
test suites should be in place to ensure that the code is stable and
functional before the QA stage.

Artifact management
The build artifacts generated from the development stage must
be versioned and stored in a central repository. This proves that
the same version is tested, deployed, and released in subsequent
pipeline stages.

Artifacts should also be scanned for vulnerabilities.

Environment setup and configuration
A stable, preconfigured QA environment — ideally, one that mir-
rors production — is required. This environment should be auto-
matically provisioned or verified as part of the transition, and
all necessary environment variables, database connections, and
secrets should be correctly configured for the QA environment.

Gate checks and approvals
Before code moves from Dev to QA, automated policy checks,
such as security scans and compliance audits, may be required to
ensure the code adheres to organizational standards. Depending
on the organization’s governance model, a manual approval step
may be required before the code transitions to QA, or the transi-
tion may occur automatically based on preset criteria.

Notification and collaboration
Developers and QA engineers should receive automated notifica-
tions about the transition so they can prepare for further testing.
These notifications should include relevant information about the
build, environment, and tests to be run.

22 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Tools like Microsoft Teams and Slack can be integrated into the
pipeline to notify relevant teams when the transition occurs, pro-
viding transparency and collaboration.

This structured transition provides a seamless, controlled, and
automated handoff from Dev to QA, focusing on code quality, test
automation, and proper environment management.

Defining the Transition from Quality
Assurance to Production

Eight essential steps and requirements must be considered to
define the transition from QA to production in a CI/CD pipeline,
enabling a smooth and secure deployment process.

Final testing and validation
Before moving to production, the software must pass final
rounds of testing, such as user acceptance testing (UAT), where
users or business stakeholders validate that the software meets
requirements and performs as expected. Before transitioning to
production, verify that recent changes haven’t broken existing
functionality.

To validate the stability of the code base, execute automated
regression test suites. Teams should check that applications can
handle expected production loads through stress or load testing.

Artifact preparation
The code or build artifact that passed QA must be properly ver-
sioned and tagged for production deployment. This guarantees
that what is tested in QA is the same as what is deployed to pro-
duction, that the artifacts are immutable (not modifiable after cre-
ation), and that they’re stored correctly in an artifact repository
for traceability and rollbacks if needed.

You can also secure your supply chain against unauthorized
changes by achieving SLSA L3 compliance. Learn more at https://
www.harness.io/blog/an-in-depth-look-at-achieving-
slsa-level-3-compliance-with-harness

https://www.harness.io/blog/an-in-depth-look-at-achieving-slsa-level-3-compliance-with-harness
https://www.harness.io/blog/an-in-depth-look-at-achieving-slsa-level-3-compliance-with-harness
https://www.harness.io/blog/an-in-depth-look-at-achieving-slsa-level-3-compliance-with-harness

CHAPTER 4 Standardizing and Governing 23

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Approval and governance checks
Transitions to production often require approvals from stake-
holders, product owners, or DevOps teams. These approvals can
be manual through a sign-off process or automated if predefined
criteria such as passing tests or policy checks are met. Final secu-
rity checks, such as vulnerability scanning or penetration tests,
should be reviewed and checks run before approval is requested,
so that compliance audits may be enforced to check that the
application meets security and legal standards before moving to
production.

Production environment setup
Be sure that the production environment is ready for deployment,
including proper configuration of servers, networking, data-
bases, and security settings. Ideally, this is automated through
infrastructure-as-code tools. All production-specific environ-
ment variables and secrets should be configured and checked to
test secure and correct application behavior.

Deployment strategy
The deployment strategy should be defined based on the project
needs. This could involve canary releases, blue-green deploy-
ments, rolling updates, or feature flag toggling to minimize
downtime and mitigate risk. A clearly defined and automated
rollback strategy should be in place. If the deployment fails or
causes issues in production, the system can be quickly reverted
to a stable state.

Monitoring and alerts
Before transitioning to production, check that monitoring and
logging systems are in place to track the application’s health
post-deployment.

Datadog, ELK Stack, or Prometheus can be configured to detect
anomalies or errors in real-time.

Set up alerts to notify teams about the deployment status and any
issues that arise during or after the transition. This assures rapid
response to production incidents.

24 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Post-deployment verification
After they’re deployed to production, automated or manual tests
should be run to validate the application’s key functionality and
validate that it functions as expected in the live environment.
Post-deployment monitoring should include tracking error rates,
performance metrics, and user behavior to quickly detect signs of
trouble in production.

Documentation and communication
Document released changes, including bug fixes, new features,
and any known issues. If applicable, communicate these notes to
relevant teams and users. Notify all stakeholders, including devel-
opers, QA, operations, and business teams, about the deployment
status and any necessary follow-up actions.

The transition from QA to production requires careful validation,
governance approvals, a robust deployment strategy, and post-
deployment monitoring to ensure the application is deployed
safely and successfully.

Securing Your Pipelines with
Role-Based Access Control

Templates can use an RBAC system to govern who can create,
modify, or use specific templates. By implementing RBAC in
CI/CD pipelines, organizations can limit access to critical compo-
nents based on user roles, improving security and reducing the
risk of unauthorized changes or deployments.

CHAPTER 5 Ten Features Shaping the Future of CI/CD 25

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

»» Preventing pipeline problems

»» Determining which tests to run

»» Rolling out parallel releases

»» Automating with GitOps

Ten Features Shaping
the Future of CI/CD

As this book explains, next-generation, artificial intelligence
(AI)–driven continuous integration/continuous delivery
(CI/CD) has many advantages over traditional tools. This

chapter outlines ten features of Harness’s solution that will shape
the future of CI/CD.

Using AI for Debugging Pipeline Issues
Harness’s use of AI for debugging aims to reduce the complexi-
ties of managing and troubleshooting CI/CD pipelines, improving
developer productivity and software delivery reliability. Addition-
ally, AI-driven insights can recommend fixes or configurations to
prevent future pipeline problems, allowing continuous improve-
ment in CI/CD processes.

26 Next-Generation CI/CD For Dummies, Harness Special Edition

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Using AI for Selecting the Right
Tests to Run

Harness uses AI to optimize test selection by analyzing previously
collected test data, code changes, and their impact on various
application parts. The AI engine identifies specific tests relevant
to the modified code, significantly decreasing the time and effort
spent running unnecessary tests. Using machine learning (ML)
algorithms, the platform learns from historical patterns and test
outcomes, refining its understanding of which tests are critical to
run for a particular change or deployment.

Automating Rollbacks
Deployment verification will trigger a defined strategy to respond
to failure, such as removing a canary node from a load bal-
ancer. If a regression is found, you can roll back a deployment
automatically or manually, with human intervention and smart
notifications.

Implementing Progressive Delivery
Progressive delivery is a practice that builds on the capabilities
of CI and CD to help you deliver with control. You can run new
versions in parallel with production releases, allowing you to
test before a complete rollout and avoiding the all-or-nothing
approach to delivery.

Enabling Automatic Release Verification
Harness continuous verification (CV) integrates with applica-
tion performance monitoring and logging tools to verify that the
deployment is running safely and efficiently. It applies ML algo-
rithms to every deployment to identify normal behavior, allowing
Harness to identify and flag anomalies in future deployments.

CHAPTER 5 Ten Features Shaping the Future of CI/CD 27

These materials are © 2025 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Integrating with GitOps Workflows
You can set up GitOps agents to manage the state of your deploy-
ments and combine that with a centralized user interface (UI) and
full-featured deployment pipeline. The result is a truly scalable,
fully automated path to delivery that includes continuous opera-
tions via GitOps.

Leveraging Machine Learning for
Anomaly Detection

Harness uses unsupervised ML to automate the analysis of all the
time-series metrics and event data from application key perfor-
mance indicators (KPIs), data, and metrics. This analysis allows
Harness to automatically verify production deployments and
identify any regressions, anomalies, or failures that may have
been introduced.

Providing Real-Time Feedback Loops
Harness’s rapid feedback loop encourages iterative development
and empowers developers to improve based on real-time insights.
It also facilitates faster bug detection and resolution, resulting in
more efficient development cycles.

Streamlining Security Compliance
Harness’s CI/CD pipelines help organizations with their DevSecOps
to integrate security in the software development life cycle (SDLC)
continuously to streamline security compliance requirements.

Facilitating Self-Service Deployments
Self-service CI/CD provides visibility, features, and access control
to allow individuals to deliver their work without depending on
someone else.

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Introduction
	About This Book
	Foolish Assumptions
	Icons Used in This Book
	Beyond the Book

	Chapter 1 Modernizing Your DevOps Processes
	Identifying Problems with Current DevOps Processes
	Maintaining security throughout the development life cycle
	Increasing complexity with microservices
	Selecting the best DevOps tools

	Changing CI/CD Processes
	Harnessing the Power of Feature Flags
	Simple UI-based feature release workflows
	Governance and verification
	Integration into CI/CD

	Chapter 2 Optimizing Continuous Integration
	Enhancing Speed
	Ensuring Security
	Improving the Developer Experience
	Managing Infrastructure Costs

	Chapter 3 Streamlining Continuous Delivery
	Explaining Continuous Delivery and Continuous Deployment
	Avoiding Script Writing
	Automating Deployment
	Implementing Progressive Delivery
	Ensuring Safety
	Managing Infrastructure Costs

	Chapter 4 Standardizing and Governing
	Using Templates and Open Policy Agent
	Defining the Transition from Development to QA
	Code commit and integration
	Automated testing
	Artifact management
	Environment setup and configuration
	Gate checks and approvals
	Notification and collaboration

	Defining the Transition from Quality Assurance to Production
	Final testing and validation
	Artifact preparation
	Approval and governance checks
	Production environment setup
	Deployment strategy
	Monitoring and alerts
	Post-deployment verification
	Documentation and communication

	Securing Your Pipelines with Role-Based Access Control

	Chapter 5 Ten Features Shaping the Future of CI/CD
	Using AI for Debugging Pipeline Issues
	Using AI for Selecting the Right Tests to Run
	Automating Rollbacks
	Implementing Progressive Delivery
	Enabling Automatic Release Verification
	Integrating with GitOps Workflows
	Leveraging Machine Learning for Anomaly Detection
	Providing Real-Time Feedback Loops
	Streamlining Security Compliance
	Facilitating Self-Service Deployments

	EULA

[—

cico

