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Preface

The software industry stands at a pivotal moment. Systems grow more complex
by the day, user demands escalate exponentially, and the cost of failure, whether
financial, reputational, or operational, has never been higher. Yet despite decades of
progress, many teams remain shackled to outdated practices: manual deployments,
reactive firefighting, and toolchains that crumble under their own complexity. This
book exists to bridge the gap between where we are and where we need to be.
Its a map for navigating the shift from brittle, high-stakes delivery to AI-driven
autonomy—a future where software deploys itself, systems self-heal, and innovation
outpaces risk.

Who Should Read This Book

This book is written for:

» Engineers and DevOps practitioners, seeking to replace toil with intelligent
automation

o Technical leaders, tasked with aligning DevOps maturity with business outcomes
like velocity, resilience, and cost control

o+ Product managers and innovators, who want to understand how Al-native deliv-
ery accelerates time-to-value

o Anyone invested in the future of software, from CTOs to students, ready to
rethink what’s possible in deployment, testing, and observability

Why We Wrote This Book

As software engineers by training, we've spent years studying the evolution of
software development and delivery. But OpenATs launch of ChatGPT in late 2022
marked a pivotal moment for us. Like many in the field, we saw generative AI not
just as a coding assistant but as a catalyst for reimagining entire delivery pipelines.




Over the next three years, we hypothesized, tested, and validated how AlI, from code
generation to agentic workflows, would reshape deployment, testing, and governance.

We wrote this book because the stakes of software delivery have changed. The rise
of microservices, cloud-native architectures, and Al-generated code has rendered
traditional DevOps 1.0 practices insufficient. Teams now juggle 10+ tools in a single
pipeline, battle “dependency hell,” and face threats like SolarWinds-style supply chain
attacks, all while racing to meet user expectations forged by consumer tech giants.

Existing resources focus on historical DevOps concepts or speculate about Al in
abstract terms. This book connects the dots. Grounded in 25 years of lessons, from
Agile’s early wins to the Kubernetes orchestration revolution, we pair technical rigor
with forward-looking insights. Modern tools exemplify this shift. We show how Al
isn’t just automating tasks but reshaping collaboration, governance, and innovation.

Of course, the pace of change is relentless. Agentic Al, self-operating systems, and
new frameworks emerge monthly. While we've strived to future-proof this book, we
acknowledge that some details will evolve. What won’t change are the core principles:
automating toil, prioritizing resilience, and aligning delivery with business value.

Navigating This Book

This book isn’t about chasing trends. It's about building systems that thrive amid
complexity. Each chapter blends theory with real-world examples, from The Phoenix
Project’s DevOps parable to Al-driven deployment. Whether you read cover-to-cover
or dive into specific sections, you'll finish equipped to transform your delivery pro-
cess and your team’s impact.

Chapter 1, “The Road to AI-Native DevOps”, traces software delivery’s evolution
from chaotic manual deployments to DevOps 1.0 practices (with their cultural shifts
and automation tools) while highlighting current challenges from microservices
complexity and toolchain sprawl that DevOps 2.0 aims to solve through Al-native
capabilities and integrated platforms.

Chapter 2, “Source Control Management”, traces the evolution of source control
management (SCM) from early systems to Git’s current dominance (with nearly 95%
of developers using it as of 2022), explaining how modern SCM solves code conflicts
and version tracking while providing practical guidance on branching strategies,
GitOps, Al integration, and implementation considerations for your organization.

Chapter 3, “The Build and Pre-Deployment Testing Steps of Continuous Integration”,
explores the evolution of continuous integration (CI) from its historical roots to
modern Al-enhanced practices, detailing how to build automation, intelligent cach-
ing, and strategic testing approaches work together to accelerate software delivery
while maintaining quality and security throughout the pre-deployment pipeline.
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Chapter 4, “Deploying to Test Environments”, guides you through the critical phase
between CI and production deployment, exploring how to establish consistent
deployment processes across environments, leverage Infrastructure as Code (IaC)
for reliability, implement GitOps workflows, optimize testing strategies (including
emerging Al-powered approaches), and automate promotion decisions—all to create
a seamless bridge between development and real-world usage while maintaining both
velocity and stability.

Chapter 5, “Securing Applications and the Software Supply Chain”, looks at the
evolving landscape of software supply chain security, detailing how organizations
can protect their applications through shift-left practices, Supply Chain Levels for
Software Artifacts (SLSA) frameworks, software bills of materials (SBOMs), and
Al-enhanced security tools while fostering a collaborative DevSecOps culture that
integrates security throughout the entire software development lifecycle (SDLC).

Chapter 6, “Chaos Engineering and Service Reliability”, explores chaos engineering as
a methodical approach to building resilient systems, showing how controlled failure
experiments—from simple latency tests to complex infrastructure disruptions—can
be integrated with service-level objectives (SLOs), error budgets, and continuous inte-
gration and continuous delivery (CI/CD) pipelines to create a culture of continuous
resilience that transforms unpredictable outages into anticipated, manageable events.

Chapter 7, “Deploying to Production”, digs into the critical challenges of production
deployments through the lens of a real-life case study, offering a comprehensive
framework for modern deployment governance, progressive delivery strategies, and
Al-enhanced verification techniques that together transform high-risk deployments
into controlled, observable, and reversible processes that protect both your applica-
tion and your business.

Chapter 8, “Feature Management and Experimentation”, covers how feature man-
agement and experimentation serve as cornerstones of modern software delivery,
showing how feature flags enable trunk-based development, team decoupling, and
progressive delivery while Al-enhanced experimentation transforms product deci-
sions from subjective debates into data-driven insights that maximize business value.

Chapter 9, “Al and Automation for Cloud Cost Management”, looks at the com-
plex world of cloud cost management, tracing its evolution into FinOps practices,
examining multicloud challenges, and demonstrating how AI-powered solutions can
optimize resource allocation, enforce governance policies, and align cost efficiency
with business objectives and environmental sustainability goals.

Chapter 10, “A Platform Engineering Approach to Modern DevOps”, explores
how platform engineering addresses the developer cognitive load crisis by creating
integrated, self-service platforms that provide paved roads and standardized tem-
plates, enabling organizations to balance developer productivity with governance
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requirements while treating the platform as a product with developers as its custom-
ers—all illustrated through a practical case study of a financial services organization
that transformed its delivery capabilities with just 6 platform engineers serving 1,400
developers.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

This element signifies a general note.

0'Reilly Online Learning

. . For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

141 Stony Circle, Suite 195

Santa Rosa, CA 95401

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://oreilly.com/about/contact.html
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We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/ai-native-software-delivery.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.
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CHAPTER1
The Road to Al-Native DevOps

Most software development teams can tell war stories about deployments gone
wrong. These are the stories that put us on paths to modernize our delivery practices.

Here’s one: After weeks or months of feature work, extensive refactoring, and a long
testing and stabilization phase, a team is ready to deploy. Developers, operations team
members, a coterie of managers, and maybe a number of executives gather in a “war
room.” Up to this point, there has been minimal collaboration between development
and operations. However, now these two groups are working together as a single
team. They start ticking through a long checklist or playbook of manual steps.

However, even exhaustive checklists do not guarantee a problem-free deployment.
Given the number of changes in the release, the deployment is likely complex
and risky. As we will see in the following chapters, dependency management is
challenging and “dependency hell” can be very real. So, the team might find that
a key dependency was missing from the production environment. The team might
discover that an incompatible library version was installed, or that a critical setting
was misconfigured, or that a migration step fails or is forgotten, or that changes have
caused requests to a partner service to fail.

Any number of missteps could take an already complex deployment off track. Ten-
sions would rise, firefighting would ensue, and the hours would stretch on. The
team would hope to wrap up deployment and any subsequent manual smoke testing
within the deployment window. If the deployment failed irreparably and could not
be salvaged, the team would hope that a rollback to the previous version would
not result in unexpected difficulties, extending downtime and complexity. When the
deployment is finally complete, the exhausted team retreats. Often the team would
be expected to be vigilant as traffic resumed for the span of a “critical care period”
A stabilization period of a few days or weeks might follow in which the development
team might pause all feature work to focus on hotfixes or patches.




As this story illustrates, heavy-lift, high-stakes deployments were draining for both
the development and operations teams. These big-production deployments, followed
by cycles of stabilization work, distracted teams from continuing to build features
that added business value.

In contrast, modern software delivery streamlines and accelerates the entire process
of getting software from the developer’s computer to the end user. Deployments are
frequent, low drama, low risk, and highly automated. But we’re entering a new era—
one that goes beyond automation. The next frontier is AI-native software delivery.

Al-native delivery weaves Al into every layer of the software delivery lifecycle, ena-
bling intelligent agents to make decisions, optimize workflows, and adapt in real
time. These agents—ranging from Code and DevOps to Security and Test—collabo-
rate autonomously, enforce compliance, self-heal infrastructure, and continuously
optimize software delivery pipelines using reinforcement learning. This shift marks a
move from reactive to proactive governance, from siloed tools to unified ecosystems,
and from static automation to dynamic autonomy.

As Al generates code, orchestrates pipelines, and reduces manual toil, development
velocity accelerates. Systems become more resilient and secure, with AI preemptively
identifying issues and autonomously resolving them. At the same time, cloud costs
shrink through intelligent optimization, and collaboration scales as Al-powered
agents handle cross-team coordination and decision-making at machine speed.

In this chapter, we will describe how software delivery has evolved over the past 25
years. We will define DevOps and describe how DevOps practices enable modern
software delivery. We will look at numerous challenges to the current state of
DevOps. Lastly, this chapter will provide an overview of how modern software
delivery, DevOps practices, and an Al-native approach can evolve to meet these
challenges.

Development + Operations = DevOps

The term “DevOps™ is often attributed to Patrick Debois, who in 2009 combined the
words “development” and “operations™ to name a conference he organized to explore
breaking down the traditional walls between development and operations teams to
deliver software faster. Two main factors created these walls:

Poor communication and collaboration
Developers commonly focused on writing code and features, then essentially
threw the finished product over a metaphorical wall to the Ops team. Ops then
bore the responsibility of deploying, maintaining, and troubleshooting the code
in production.

2 | Chapter 1: The Road to Al-Native DevOps



Conflicting priorities
Development teams prioritized rapid development and the quick release of new
features, while Ops teams focused on system stability, security, and preventing
downtime. Despite their different priorities, these teams are inherently intercon-
nected and interdependent. No matter how impressive your code or infrastruc-
ture is, it has no real value until it’s deployed and running in production to serve
your business objectives.

This goal mismatch, sometimes referred to as “the core chronic conflict;” could lead
to friction and finger-pointing when issues arise.

In response, DevOps principles encourage communication at every stage. They
encourage Ops involvement early in development and an ongoing partnership with
Devs in supporting code long after it has been deployed.

A Short History of DevOps

Increasingly sophisticated software teams, new software methodologies, and new
tools helped pave the way for DevOps. In this section we'll look at these factors.

Agile in the Aughts

In the early 2000s, organizations became very interested in and receptive to new
ideas about how to make software delivery more efficient. New “Agile” methodologies
that built on lean manufacturing ideas became popular. These methodologies argued
against “waterfall” software delivery patterns that emphasized extensive up-front
planning and a strictly linear sequence of distinct phases. In contrast, Agile promoted
short development cycles and frequent releases that were highly responsive to change.
Many parallel efforts formalized new Agile practices. A 1995 paper formalized Scrum
practices. Kent Beck described a set of Agile practices for software development in
his 1999 book Extreme Programming Explained (Addison-Wesley). In 2001, Beck and
other influential advocates of Agile processes spoke to similar themes in the Agile
Manifesto, which promoted adaptability and responsiveness over rigid adherence
to plans.! DevOps borrows the name “continuous delivery” from the manifestos
first principle: “Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software”

Jeftrey Fredrick has observed that the progression of Ken Schwaber’s Scrum books
from 2001 to 2007 serves as a kind of barometer for Agile’s increasing maturity and
organizational reach. During this time, Scrum was rapidly emerging as the dominant
Agile practice, thanks to its clear structure, prescriptive roles, and adaptability across
teams. In 2001, Agile Software Development with Scrum (Pearson) introduced the

1 Kent Beck et al., “Manifesto for Agile Software Development”, 2001, Agile Alliance. Retrieved 14 June 2010.
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framework to developers and small teams just beginning to explore Agile methods.
By 2004, Agile Project Management with Scrum (Addison-Wesley) addressed practical
implementation challenges, signaling growing adoption across broader swaths of IT.
By 2007, The Enterprise and Scrum (Microsoft Press) acknowledged the growing
demand for scaling Agile practices beyond individual teams to entire organizations.
These books reflected—and helped shape—the journey of Agile from fringe idea to
enterprise imperative.

Continuous Integration and Continuous Delivery

Over the next decade, technology organizations were increasingly influenced by agile
thinking. One result was the adoption of continuous integration and continuous
delivery (CI/CD) practices.

The “Manifesto for Agile Software Development” gave rise to the practice of contin-
uous integration, which enables a key agile tenet, the frequent delivery of working
software. Developers merge their code changes into a shared repository. With contin-
uous integration, each merge triggers an automated build and testing process. This
automated system quickly catches errors and conflicts, allowing teams to fix them
early in the development cycle. Continuous integration encourages smaller, more
frequent updates, leading to faster delivery, reduced integration issues, and a healthier
codebase.

Continuous delivery is a natural extension of continuous integration. CD automates
the process of taking code that has passed the integration build and testing and pre-
paring it for release to production environments. This includes steps like packaging,
configuring, and deploying the software to staging areas. CD enables teams to push
new features, bug fixes, and updates rapidly and reliably, ensuring that deployable
software is always available.

Delivering a “potentially shippable product” at the conclusion of each development
cycle is another key Agile practice. Potentially shippable simply means reliable, tested,
packaged software that could be deployed to production. (In practice, many organ-
izations that embraced CD delivered only internally and continued to deploy to
production infrequently. Continuous delivery did not equal continuous deployment.)

Milestones in Early DevOps

Whereas Agile methodologies tend to focus on the planning and execution parts of
the software delivery lifecycle, early DevOps focused on delivery and operations. In
the years that followed the emergence of DevOps, the movement gained significant
momentum. A key milestone occurred in 2009, when the inaugural DevOpsDays
conference was held. This event brought together professionals to share their experi-
ences and insights on DevOps practices.
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Another significant development was the 2010 publication of the book The Phoenix
Project (IT Revolution Press) by Gene Kim, Kevin Behr, and George Spafford. This
narrative illustrated the challenges faced by a fictional IT organization and how the
adoption of DevOps principles and practices led to a dramatic turnaround in its
performance. It made the case for DevOps in a way that resonated with both technical
and nontechnical audiences. The following year saw the release of another influential
publication, The DevOps Handbook by Gene Kim, Jez Humble, Patrick Debois, and
John Willis. This practical guide helped many organizations start their DevOps jour-
ney by providing a comprehensive framework for implementing DevOps.

In 2013, the initial Puppet Labs (now Puppet) “State of DevOps” report by Kim
and Humble drew attention. The report didn't just focus on technical metrics; it high-
lighted the business benefits of DevOps adoption, demonstrating that organizations
implementing the approach could ship code 30 times faster than their peers, with
a 50% reduction in failures. This tied DevOps practices directly to the business out-
comes that leaders care about. The book Accelerate: The Science of Lean Software and
DevOps (IT Revolution) by Nicole Forsgren, Jez Humble, and Gene Kim explored this
theme in greater detail.

The introduction of Platform-as-a-Service (PaaS) and Docker in 2013 marked
another pivotal moment, as these technologies simplified the deployment and man-
agement of applications, making DevOps practices feasible on a larger scale. Prior to
this, the complexity of managing infrastructure and applications made widespread
adoption of DevOps challenging. The launch of AWS Lambda in 2014 further
transformed the landscape by pioneering event-driven function execution at scale,
allowing developers to focus on writing code without worrying about the underlying
infrastructure. Meanwhile, Kubernetes, also introduced in 2014, provided a robust
framework for orchestrating containerized applications at scale, ensuring that deploy-
ments were reliable, efficient, and scalable.

By the latter half of the decade, machine learning (ML) techniques began to creep
into DevOps toolchains, especially in application performance monitoring (APM)
and testing disciplines. Testing tools would use ML to optimize test execution and
detect changes in user interfaces. Meanwhile, APM tools like Datadog and New Relic
were early to brand themselves “AI Ops” as they used ML to identify problematic
signals. By 2018, Harness applied ML to continuous delivery to detect problematic
signals, enabling the system to identify when deployments caused issues and trigger
necessary rollbacks. Together, these technologies laid the groundwork for modern
DevOps by providing the necessary tools and frameworks to manage complex soft-
ware systems efficiently, paving the way for AI-native DevOps.
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DevOps 1.0

DevOps has progressed from a loose, niche concept to a well-established set of ideas
we can refer to as “DevOps 1.0 Its attributes include:

Cultural transformation
Recognizing the significance of cultural shifts to align software development and
operations teams

Automation practices
Implementing practices such as continuous integration and continuous delivery
to streamline software delivery

Tools for automation
Utilizing specific tools to automate various stages of the software delivery pipe-
line, including code commits, testing, deployment, provisioning, and production
monitoring

Early adopters of DevOps 1.0 practices experienced immediate wins. In the early
2010s, many engineering teams were releasing software on a quarterly basis, with
weeks of effort dedicated to manual testing, coordination, and production deploy-
ment. These release processes were slow, error-prone, and required off-hours sched-
uling to minimize risk. As organizations began embracing early DevOps principles—
bringing development and operations teams closer together and automating key parts
of the delivery pipeline—they achieved faster release cycles, greater reliability, and
reduced manual effort. For many, the shift enabled a move from quarterly to biweekly
or even weekly releases, setting the stage for more iterative development and faster
time-to-value.

Challenges to DevOps 1.0

DevOps 1.0 provided valuable concepts, practices, and tools. However, companies
today face new challenges in fully realizing the benefits of DevOps as a result of:

o Software trends that have introduced complexities that require DevOps to adapt

o DevOps 1.0 toolsets that either are lacking in features or have become overly
complex for many organizations

The following sections will explore the details of these challenges.

The adoption of cloud-native and microservices architectures. New architecture patterns
involve dozens of discrete microservices deployed to individual containers. DevOps
1.0 pipelines were not equipped to address the requirements of these new
architectures.
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Over the past decade, microservice and cloud-native architectures have become the
de facto standard for modern software development, driven by the need for greater
scalability, flexibility, and agility in software systems. These architectures introduce
significant new requirements for DevOps teams. The adoption of microservices
leads to a proliferation of services to deploy, each with its own dependencies and
configurations. Orchestrating deployments and maintaining consistency across these
distributed services becomes increasingly challenging.

The usage of containers (a key feature of cloud-native systems) and serverless
architectures necessitates new strategies for deployment and management and adds
another layer of complexity. DevOps teams must now handle deployments across
dozens or even hundreds of ephemeral containers or serverless functions, requiring
robust orchestration tools, automated processes for building and managing container
lifecycles, and a deep understanding of these emerging technologies. Automating the
entire lifecycle of containers—from building images, to pushing them to registries,
to rolling out updates with minimal downtime—is critical for efficient container
management.

The rise of open source software. Open source software (OSS) has become a ubiquitous
part of modern software development. While OSS offers numerous benefits, it intro-
duces new challenges for DevOps teams. Managing dependencies, ensuring compati-
bility with different versions, and maintaining security patches across multiple OSS
components can be a daunting task. Additionally, teams must carefully vet the code
and ensure it aligns with their organization’s security and compliance standards.

The importance of the digital experience and consumerization of enterprise. In this era of
digital disruption, Marc Andreessen’s prophetic claim that software is eating the
world proves ever more accurate. The digital experience a company provides is
becoming the primary touchpoint for customers, shaping how they experience a
brand. Moreover, the consumerization of enterprise technology means that employ-
ees expect the same seamless experiences and continual updates they get with
customer-targeted applications. These expectations pressure DevOps teams to deliver
even more frequent releases, maintain high availability, and enable experimentation
to power rapid innovation.

Outgrowing DevOps 1.0 toolsets

In the years since the first DevOpsDays in 2009, what we need from our tools
has changed. Delivery cadences have accelerated while regulatory burdens have
increased. Take artifact registries: originally introduced as local caches to speed up
builds, they’re now essential for securing software supply chains across a multitude of
languages. To simplify deployments, we containerized and our builds became longer,
making our continuous integration builds anything but continuous. We shifted from
one set of configuration management tools to newer, cloud-native declarative tools.
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But we still need to test, secure, and govern those infrastructure changes. Meanwhile,
new tools arrive all the time—each promising improvements but also requiring
wiring up to everything else. For many teams, the current stack is crumbling.

Pipelines quickly become very complex. Organizations are managing an average of 10
or more different tools to deploy software. For example, an automation pipeline to
deploy Rails, Sidekiq, and NodeJS apps might include the following tools:

+ GitHub actions for running CI

o Libraries for instrumenting Sidekiq, Rails, and Puma and pushing application
metrics into Prometheus

o Docker image building and Kubernetes

o Artifactory for storing images and Helm charts
+ ArgoCD for GitOps deployments on Kubernetes
+ Helm for managing deployments and upgrades

o Terraform for managing the Amazon Web Services (AWS) infrastructure, roles,
permissions, etc.

+ New Relic for exception capture and monitoring
o Kube-state-metrics for gathering container metrics
o Prometheus for storing metrics

o Grafana for making Prometheus metrics consumable

The integration and management of this toolset may pose a considerable challenge
for a team with limited resources. Lets look at some of the challenges of a DIY
approach.

Widely used open source tools are often suboptimal. A DIY approach to DevOps often
results in a less efficient pipeline. Some open source tools lack features that could
reduce developer effort and shorten the time to production. For example, maintain-
ing uptime and scaling in Jenkins requires significant resources. Long testing times
can lead to slow builds. Lastly, the model for reusing pipelines is copy/paste, leading
to “pipeline sprawl,” which can be difficult and expensive to maintain. Chapter 3 will
cover these issues in additional detail.

DIY pipelines result in redundant and wasteful efforts.  Often teams must implement
plumbing to bring tools and systems together. This leads to substantial reinvent-
ing of the wheel. For example, Jenkins and ArgoCD are common tools used for
CI/CD. These tools provide powerful features for automating the software develop-
ment and deployment process, but they require teams to build essential constructs
like role-based access control (RBAC), audit logs, and notifications from scratch.
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Implementing and maintaining is an effort that could otherwise be applied to deliver-
ing value to customers.

Automation is often incomplete, requiring manual steps. A team using automated scripts
for most of the deployment but requiring manual intervention to configure environ-
ment variables can lead to inconsistent deployments if not all team members follow
the same procedure. Incomplete automation can lead to gaps in monitoring and feed-
back loops, as manual steps might not trigger automated alerts or metrics collection.
Manual steps introduce the risk of human error, which can lead to downtime or
security breaches. Thus, incomplete automation in DevOps can lead to inefficiencies,
errors, and scalability issues.

Governance is an afterthought. Without up-front governance, teams might overlook
compliance requirements (such as meeting General Data Protection Regulation
[GDPR] standards), leading to costly rework or fines when issues are discovered later.
If security measures are applied inconsistently or as an afterthought, applications
are left vulnerable to attacks. Without clear governance policies, resources such as
cloud services or infrastructure might be overprovisioned or underutilized, leading
to wasted costs (a topic we'll cover in Chapter 9). Without oversight, teams may
use different tools, processes, and standards, leading to integration challenges and
inefficiencies.

DevOps 2.0

DevOps 1.0 has significantly accelerated the software delivery process for many
companies. Yet its complexity, the gaps it leaves, and the investment it requires create
room for improvement. Enter what we're calling DevOps 2.0—a vision defined by
a simpler developer experience, end-to-end automation with views to easily manage
all of the moving parts, and Al capabilities that augment the entire pipeline. This
evolution shifts the focus from tools and processes to the people and outcomes they
serve.

DevOps 2.0 processes and tools enhance the developer experience with powerful new
features. Developers start new projects and services within minutes by automating
the setup of development and delivery toolchains. Out-of-the-box integrations give
teams the ability to easily spin up and connect repositories, agile projects, and pipe-
lines. To streamline the process further, templates encapsulate an organization’s best
practices, ensuring consistency and eliminating work management overhead when
creating new services. Teams focus on building their applications, not on tedious
infrastructure setup. Al agents perform increasingly complex DevOps tasks, such as
automatically diagnosing and resolving infrastructure and pipeline issues, optimizing
resource allocation, and suggesting architectural improvements based on observed
performance patterns.
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DevOps 2.0 tools detangle the complexity of DevOps 1.0 solutions with a more
cohesive, tightly integrated toolset. Essential constructs (RBAC, audit logs) are inte-
grated. Support for various deployment strategies and experimentation approaches
are built in, enabling the frequent releases and rapid iterations teams need. New tools
scale to support large-scale deployments across multiple environments, including
on-premises, cloud, and hybrid setups. DevOps 2.0 tools will offer secure pipelines
and policy enforcement to minimize the inherent risks of open source adoption and
Al-written code.

Lastly, Al is being baked into DevOps 2.0 tools and processes throughout the soft-
ware delivery pipeline. Emerging protocols like the Agent Control Protocol (ACP),
Model Context Protocol (MCP), and Agent-to-Agent Protocol are helping enable
seamless interaction between AI models and the broader ecosystem of tools, systems,
and data. These protocols define standardized ways for Al agents to interact with
tools, access data securely, and perform tasks within guardrails—enabling more
dynamic and autonomous workflows.

In modern DevOps environments, the protocols act as bridges between Al capabili-
ties and the operational infrastructure, allowing Al to do more than just observe and
suggest; they empower it to take meaningful action while remaining auditable and
compliant. As DevOps 2.0 embraces increasingly intelligent automation, these proto-
cols provide the foundation for safe, scalable, and effective AI-driven operations that
supercharge developer workflows. Imagine tools that can generate code, comments,
tests, and infrastructure scripts, or pull out relevant code snippets using natural
language search. In addition, ML speeds up test cycles by only executing relevant
tests.

Leveraging Al, the tools provide personalized guidance during onboarding, detect
vulnerabilities and offer remediation advice or instigate repairs, and even help write
and understand policies. The reliability of deployments is improved through the
analysis of observability telemetry to identify when rollbacks are needed. AI analyzes
feature experiments to understand the impacts of change. This AI-driven transfor-
mation across the software development lifecycle (SDLC) is boosting productivity,
improving quality, reducing risk, and enhancing the overall developer experience.

As developers can code increasingly quickly with AI coding assistants, a business’s
ability to quickly and safely deliver changes to production and understand if those
changes have been beneficial will be the limiting factor to innovation. To do this
well will require both doing the basics of DevOps well and infusing cutting-edge Al
throughout every stage of delivery.
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Summary

Modern software delivery emphasizes rapid releases, seamless experiences, and con-
stant innovation, driving a need to transform traditional DevOps practices. While
DevOps 1.0 laid the groundwork with CI/CD and initial cross-team collaboration,
its reliance on complex toolchains built from disparate solutions creates hurdles.
These challenges stem from the growing architectural complexity of applications
(microservices, containers), the proliferation of open source components, and the
need to manage increasingly diverse toolsets. DevOps 2.0 aims to address these issues
by simplifying the developer experience, offering more integrated and intelligent
toolsets, and infusing AI natively throughout the pipeline. This evolution promises
greater efficiency, enhanced quality, and a focus on delivering value rather than just
managing tools.

In addition, Al-native software delivery replaces static automation with autonomous
agents (e.g., Code, DevOps, Security) to enable self-optimizing systems and proac-
tive and unified ecosystems. It accelerates development velocity, enhances reliability,
ensures compliance, reduces costs, and fosters scalable collaboration through autono-
mous code generation, contextual pipeline creation, predictive failure resolution, and
real-time decision-making. While this is transformative, organizations must address
Al governance, data privacy, and skill gaps to fully leverage its benefits.

In Chapters 2, 3, and 4, we will cover the backbone of DevOps automation. This
includes source control management for effective version control, building and test-
ing using continuous integration for efficient development, and deploying internally
using continuous delivery systems for seamless software releases. We will explore
both the DevOps 1.0 approaches and the opportunities presented by DevOps 2.0.
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CHAPTER 2
Source Control Management

Imagine a scenario where you and your team are collaborating on a complex soft-
ware project. Multiple minds are contributing, making revisions and enhancements.
Without a clear system for managing changes, you risk overwriting each other’s work
and losing track of who updated what and why they made those changes. Without
a clear system to tag sets of changes, you are unable to navigate back to a previous
stable version of your team’s code should an issue arise. Without defined workflows
and structured access control, anyone can change anything at any time, with no
oversight. Without controls, your team is unable to determine which code files were
used to build a particular release should you need to recreate it.

Next, imagine that several teams have worked for months on a new application and
it is now nearing time to deploy to your production environment. Ad hoc fixes and
tweaks have been made to various development and QA environments, but those
have not been reliably reflected in the production environment. Important produc-
tion settings have not been repeated in QA environments, and development environ-
ments vary widely. Given the increasing complexity of the required environments,
spinning up new environments has become a time-consuming and error-prone bot-
tleneck that creates frustration and delay.

These situations are recipes for dysfunction and wasted effort. Source control man-
agement (SCM) practices were created to address these very problems. At its core,
SCM is about tracking and managing changes made to code and other critical
resources like configurations over time.
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Today, artificial intelligence is transforming how we approach SCM. AI can automati-
cally detect risky changes, suggest improvements to code or configurations, and even
help resolve merge conflicts by understanding the intent behind modifications. It
can identify inconsistencies across environments, recommend corrections, and opti-
mize deployment workflows. Al-powered tools are not just helping teams manage
complexity—theyre enabling faster, safer, and more resilient development cycles.
As software delivery becomes more distributed and dynamic, AI is becoming an
essential partner in making SCM more intelligent, proactive, and efficient.

Introducing Source Control Management

The problem of coordinating changes across a team dates back to the early days of
programming, and the history of SCM practices is intricately linked to the evolution
of computer programming. In this section we’ll explore how SCM has evolved and
the critical role Al tools play in modern SCM.

A Short History of Source Control Management

In the early days of programming, programs were relatively simple; they were con-
strained by limited hardware, and code management was rudimentary. As CPUs
became powerful and sophisticated, computation and code became more complex.
Code repositories, central stores that provide basic SCM functions, first emerged in
the 1970s alongside the rise of high-level languages and structured programming
methodologies. Tools like Source Code Control System (SCCS) offered basic version
tracking, allowing developers to revert to previous versions and see the history of
changes. These early systems mirrored the shift toward more organized program
development.

SCM further evolved in the 1970s with the emergence of more structured software
engineering teams. Tools like Revision Control System (RCS), introduced in 1982,
and Concurrent Versions System (CVS), introduced in 1986, added features crucial
for collaboration, including branching. This enabled more complex project manage-
ment and a collaborative culture.

In the early 1990s, IBM Rational ClearCase emerged as a commercial solution for
SCM. It emphasized robust configuration management and process customization,
making it suitable for complex software development environments. Subversion
(SVN), developed by CollabNet, is another centralized code repository that gained
popularity. SVN 1.0 was released in 2004 to address shortcomings in CVS and
provide missing features.
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Distributed version control and Git

The rise of Agile methodologies and open source in the early 2000s put new demands
on software development. Rapid releases meant that teams required more flexibility
and control over increasingly complex codebases. Teams themselves changed, becom-
ing larger and often geographically dispersed. Git was created in 2005 by Linus
Torvalds, the creator of the Linux kernel. He needed a powerful and efficient system
to manage the massive codebase of the Linux project, and existing options fell short.

A version control system (VCS) is the core technology that tracks changes to files
over time, forming the foundation of any SCM approach. Unlike most earlier code
repositories, Git is a distributed VCS. With a centralized VCS, everyone works from a
single copy of the codebase stored in a central server (repository). Each developer has
their own local copy (working copy) that they can modify. When a developer makes
changes and commits them, those changes are immediately uploaded to the central
repository, making them visible to everyone else. To see the latest changes from
others, developers simply need to update their local copy from the central repository.
Figure 2-1 shows a centralized VCS.
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Figure 2-1. Centralized version control

Distributed systems take a different approach. Here, each developer has a complete
copy of the codebase (including both the repository and their working copy) on their
local machine. Changes made by a developer are private to their local copy until they
explicitly share them with the team. This is done by “pushing” their changes to the
central repository. Similarly, to see updates made by other developers, users need to
download (“fetch”) those changes from the central repository into their local copy.
Figure 2-2 shows a Git distributed VCS.

Introducing Source Control Management | 15


https://oreil.ly/YLeDg

— e

Server
ll Repository J:
\ A v,
Push Fetch Push| |Fetch Push Fetch
v 1 ( v 1 ( v
[ Repository ] [ Repository ] [ Repository
A F A
Commit| |Update| |Commit| |Update Commit| |Update
4 4

Working Working Working
copy copy copy
Workstation/PC| |Workstation/PC| [Workstation/PC
#1 #2 #3

\ J - J \ J

Figure 2-2. Distributed version control with Git

Git’s focus on speed, its distributed nature, and robust branching made it a game-
changer in a number of ways:

Distributed facilitates offline work
Git’s decentralized approach facilitates efficient and independent work, as devel-
opers can make changes locally without a central server. This also enabled devel-
opers to work offline.

Flexible branching and merging
Git’s branching system is incredibly flexible. Developers can create isolated
branches to work on new features or bug fixes without affecting the main
codebase. Merging these branches back into the main codebase is a smooth
and efficient process. This empowers developers to experiment and iterate more
freely.

Lightweight and efficient for large codebases
Git excels at handling large codebases efficiently. It only stores the differences
between code versions, making it faster and requiring less storage space than
traditional SCM systems.

Nonlinear history aids organizations
Unlike some SCM systems that enforce a linear history, Git allows developers
to rewrite history through functionalities like rebasing. This flexibility helps
maintain a clean and organized codebase.
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The first widely used hosted Git repositories arrived a few years later. GitHub, the
most popular today, was launched in 2008. These platforms are built upon the
power of Git, offering a user-friendly web interface, cloud storage for codebases,
and collaboration features. This combination transformed Git from a powerful but
technical tool to an accessible and social platform for software development, making
it a cornerstone of modern software development workflows.

While traditional centralized repositories still have a legacy footprint and are in use
in environments with very specific needs, Git is now the predominant choice. A 2022
Stack Overflow survey found that 94% of overall respondents used Git and 98% of
those using any source control use Git. For this reason, we will focus our attention on
Git repository variations.

Branching out with Git

In 2010, Gitflow branching conventions emerged to use branching to provide a
clear separation between development, feature creation, and release preparation.
Figure 2-3 shows a Gitflow workflow.

In the Gitflow workflow:

1. The main codebase resides on a branch called “main” This branch is typically
considered stable and should only contain production-ready code.

2. A new “develop” branch, which serves as the continuous integration branch for
all development work, is created.

3. Feature development happens on isolated branches (feature/release branches)
that branch from the develop branch. Developers work on new features and bug
fixes on these feature branches. Once a feature is complete and thoroughly tested,
it's merged back into the develop branch.

4. The develop branch acts as an integration point for all completed features. It rep-
resents the upcoming release version and is continuously updated with merged
feature branches.

5. When it’s time for a release, a release branch is created from “develop.” Bug fixes
and minor adjustments can be made on this branch. Once finalized, the release
branch is merged back into “main” to create the official release. A corresponding
tag is created in “main” to mark the release version.
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Figure 2-3. Gitflow workflow

Pull requests, sometimes abbreviated as PRs, are a core collaboration feature in Git
version control used for code review and integration, and are widely used with
Gitflow and other branching models. Pull requests provide a structured way for
developers to propose changes to a codebase and get them reviewed by others before
merging them into the main branch.

Gitflow’s emphasis on planned releases and separate release branches has been chal-
lenged by newer Git branching models. Fueled by the growing adoption of continu-
ous integration and continuous delivery, these models prioritize faster deployments
with more frequent updates. Trunk-based development discards the idea of a dedi-
cated development branch altogether. Instead, features are continuously integrated
directly into the main branch (often called “trunk” or “main”) after rigorous testing.
Figure 2-4 shows this pattern.
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Figure 2-4. Trunk-based development

This streamlined approach allows for quicker feedback loops and faster deployments,
aligning well with modern DevOps practices. Pull requests remain essential in these
workflows, ensuring code quality through code review before merging changes into
the main branch.

GitOps and Source Control Management

We have seen how code repositories evolved alongside programming and software
development practices to solve the problems we imagined, enabling teams to
collaborate effectively in source code. But what about deployment problems? How
can we efficiently and systematically produce the environments we need and how can
we streamline the deployment of our code into the production environment?

Here is where GitOps comes in. In bringing Dev and Ops together, DevOps empha-
sizes the importance of automation in eliminating manual errors and helps ensure
consistency across environments. This translates to faster deployments, improved
reliability, and reduced risk. GitOps refers to automating the process of provisioning
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infrastructure, especially in modern container-first, cloud infrastructures. GitOps
emphasizes the use of a code repository (usually Git) as the single source of truth for
the desired state of the system and leverages automation to continuously reconcile the
actual state with the desired state. Resources stored to our repositories can include:

Infrastructure configuration
Files that define components needed for the environment, the type and number
of virtual machines (VMs), storage configurations, network settings, and security
policies. This can include declarative and imperative configurations and deploy-
ment scripts.

Environment variables
These are essential for storing sensitive information like passwords or API keys
that should not be directly embedded in code. Infrastructure as Code (IaC) tools
often have mechanisms for managing and referencing environment variables
securely.

Additional resources
Depending on the complexity of the environment, the repository might also store
other resources such as container images (through git-1fs) used for application
deployment.

Using our repository as that single source of truth, we can take advantage of its
powerful features. We get detailed version tracking and change histories, and we can
manage our infrastructure updates with Git workflows that promote collaboration
and oversight like code reviews through pull requests. Well-managed infrastructure
automation translates to faster deployments, fewer errors, and reliable environments
every time a new one needs to be created. We'll learn more about using GitOps to
deploy in Chapter 4.

Monorepos and Remote Caching

We mentioned the importance of microservices in Chapter 1. Two key practices that
enhance productivity in microservices-based systems are the use of monorepos and
remote caching.

A monorepo (monolithic repository) is a single version-controlled code repository
that stores the code for multiple projects or services. In a microservices context,
this approach simplifies collaboration, streamlines dependency management, enables
atomic updates across services, and reduces versioning conflicts.

Remote caching refers to storing build artifacts—such as compiled code or test
results—on remote servers. Tools like Nx use this technique to significantly speed
up development workflows by allowing teams to reuse previously generated outputs
instead of rebuilding from scratch, reducing redundant computations.
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Together, monorepos and remote caching support faster and more efficient CI/CD
pipelines and contribute to improved overall system performance. However, mon-
orepos can introduce complexity as projects scale, and remote caching can raise
concerns about vendor lock-in if not thoughtfully implemented.

Al'in Source Control Management

AT tools have revolutionized how developers approach coding. GitHub Copilot, Cur-
sor, Harness AI Code Agent, and similar coding assistants/agents act as intelligent
pair programmers, offering real-time code suggestions based on project context.
These tools can predict and suggest entire lines or blocks of code, significantly
speeding up the development process.

Beyond code completion, Al assistants can:

o+ Generate boilerplate code structures automatically
o Suggest different implementation approaches
« Provide code explanation and documentation

o Assist with debugging and optimization

Al-native software delivery starts with an Al-native SCM. The integration of AI with
SCM extends beyond just code completion. Within SCMs, Al can analyze repository
patterns, identify potential bugs before they reach production, and suggest architec-
tural improvements based on best practices observed across similar projects. This
proactive approach significantly reduces technical debt and improves code quality
from the earliest stages of development. We will explore some of these themes later in
the chapter.

In the following sections we'll walk through how SCM systems fit into the delivery
pipeline. With that understanding, we'll discuss factors to consider when choosing
an SCM that is right for your team. Lastly, we'll look at characteristics of modern
code repositories, including the role of Al, that can simplify your entire software
development pipeline.

Source Control Management in the Delivery Pipeline

The core repository is a critical component of the delivery pipeline, anchoring the
entire pipeline process. It serves as the single source of truth for the code, ensuring
consistency and reliability, and it is the entity that developers interact with continu-
ally, initiating integration and delivery activities.
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Figure 2-5 depicts the relationship of the code repository to continuous integration

and delivery.
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Figure 2-5. Developer actions against the code repository instigate the CI/CD pipeline

Let’s walk through the three main parts of a typical pipeline:

Code repository
Developers work against the code repository, committing changes and opening
and closing pull requests.

Continuous integration

Continuous integration is initiated by specific actions within a code repository.
These triggers can be customized, including events such as code commits, the
opening or closing of pull requests, or other relevant actions determined by your
team’s specific needs and practices. CI gives developers rapid feedback on code
changes. By automating builds and tests, CI acts as an early warning system,
alerting developers to potential bugs, integration issues, or even style violations.
This immediate feedback empowers developers to quickly address problems,
preventing them from snowballing into larger, more costly issues down the line.
With CI, your codebase stays in a consistently deployable state, ready for the next
step in your delivery pipeline.

Continuous delivery and deployment

Continuous delivery and deployment steps automate the provisioning of infra-
structure and the deployment of new code versions to one or more pre-
production environments. Various types of tests are typically executed against
the app running in pre-production environments. We'll look at these steps in
Chapter 4. Finally, automatic or manual decisions gate the final deployment
of the software into the production environment. We'll discuss these steps at
length in Chapter 8. By deploying smaller changes frequently, CD streamlines the
delivery process, reduces release risk, and enhances the ability to respond to user
feedback quickly.
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Many code repositories build in secret detection features. Secrets can include the
following:

API keys
Unique identifiers used to authenticate and authorize access to various web
services and APIs

Access tokens
Temporary credentials that grant specific access rights to an application or
resource

OAuth tokens
Tokens used for delegated authorization, allowing one application to access
resources on behalf of a user

Private keys
Secret keys used in asymmetric encryption to decrypt messages or verify digital
signatures

Usernames and passwords
Credentials used for basic authentication to systems and services

Database connection strings
Details needed to establish a connection to a database, often including sensitive
information like hostnames, usernames, and passwords

Cloud service connection strings
Strings used to connect to cloud services like Azure Storage or AWS S3, poten-
tially containing access keys and other secrets

Some code repositories will prevent or warn a developer when attempting to commit
or merge code with a detected secret. CI processes can play a role in secret detection,
preventing them from reaching a production environment. An ideal approach is to
leverage both for comprehensive security.

Code Repository Considerations

Given the importance of SCM to software development, selecting a code repository
is one of the first decisions a team will make. Where will we put the source code? is a
question a team will need to answer to even kick off a project.

First and foremost, a repository must support the basic operations and the developer
workflows that are critical to your team:

Code Repository Considerations | 23



o Creating, importing, and cloning repositories with support for distributed offline
work

o Branching, merging, and defining branching rules to meet your specific team’s
needs (e.g., limiting branch creation/deletion to specific users)

o Creating, reviewing, and merging pull requests, along with defining pull request
policies in line with the governance your team requires (e.g., requiring all
changes to be associated with a pull request, prohibiting direct commits, or
setting a minimum number of required reviewer approvals)

+ Creating and modifying tags, and defining tag policies (e.g., enforcing tag names
to adhere to a specific pattern like semantic versioning)

While there may be differences in the implementation details, these are expected
repository features.

In creating a delivery pipeline, teams typically start with repository choice first;
because this is a choice that can have far-reaching effects on the implementation, it
is critical to ensure your code repository will support seamless integration within
a broader ecosystem. Your code repository should function in an ecosystem that
enhances your team’s productivity instead of adding to their workload. In addition,
a solution should be cost-effective and provide the transparency your organization
requires.

Comprehensive Integrations

A well-designed DevOps ecosystem is characterized by easy-to-use tooling and com-
prehensive integrations with the functions and services that your delivery pipeline
requires. This stands in contrast to a piecemeal approach, where developers are
burdened with manual integration of many disparate tools, which can lead to issues
that are difficult to troubleshoot and security risks. It is also contrasted with overly
complex single-platform solutions, often suffering from feature bloat, that are diffi-
cult to configure.

An example of streamlined integration is configuration-as-code. This practice allows
updates to your delivery pipeline to be versioned and tracked directly within your
repository, just like your project code. You can further enhance collaboration and
governance by enforcing workflows that require changes to be made through pull
requests and approvals, mirroring standard development practices.

Another feature example relates to security/vulnerability scanning. Displaying detec-
ted vulnerabilities and suggested remediations in the context of a pull request helps
the developer quickly understand and resolve any detected issue.
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Al-Powered Features

The past few years have seen explosive growth in coding assistants or agents that
use large language models to improve developer efficiency. These coding assistants
help with auto-completing code, generating code suggestions, understanding what a
piece of code does, and many other use cases. When Al assistants are integrated with
code repositories to have access to the full codebase as context—not just isolated code
snippets—they can generate more accurate and relevant suggestions.

MCP plays a key role here by providing a universal, standardized way to connect
AT models and code assistants with various data sources, including repositories like
Harness Code Repository, GitHub, and Git. This eliminates the need for custom
integrations, reducing development effort and increasing efficiency.

Another powerful application of generative AI (GenAl) in code repositories is
semantic search—the ability to search an entire codebase using natural language.
Tools like Sourcegraph’s Cody and Harness Code Repository enable developers to
ask questions like, “How is authentication implemented and where is this code?”
rather than relying on keyword-based searches like “log in” or “authenticate” This
capability is especially valuable for onboarding new team members and helping them
quickly understand complex codebases without deep familiarity with project-specific
terminology.

Regarding code reviews, tools like DeepCode and Codacy use ML algorithms to
review code changes, automatically detecting potential bugs, code smells, and adher-
ence to coding standards more efficiently than manual reviews. Other use cases for
Al in SCMs are enhancing security by automatically scanning for vulnerabilities and
compliance issues before code is committed and recommending fixes for those issues,
summarizing pull requests, and generating software delivery pipelines using SCM as
one of the data sources.

It is important to note that with AI systems, results depend heavily on the data
used to train the AI models. So, for example, “good” code will result in good code
suggestions and reviews, and “bad” code will result in bad code suggestions and
reviews.

Measuring the impact of Al is equally important in verifying whether using AI has
actually had a positive impact on the developers. Tools such as Harness Software
Engineering Insights and others can help with measuring the productivity of develop-
ers using different coding assistants and also compare them with the developers that
don’t use any coding assistants.

Al-powered SCMs accelerate time-to-market by generating fast and reliable code
(especially when well-trained), improving code quality by identifying issues—includ-
ing security vulnerabilities—at the source, and enhancing team collaboration by
elevating the quality and efficiency of code reviews.
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Efficiency and Transparency Through Open Source

Whether or not your DevOps tools are open source is an important consideration.
Open source solutions can be cost-effective for organizations with budget constraints,
and the transparency they offer has advantages as well.

Proprietary solutions can often claim to offer reliable uptime and dedicated customer
support teams to address any technical issues you encounter. However, there are
often subscription fees for enterprise users, which can be a significant cost factor
for small teams. Open source codebases are free to use, making them ideal for
teams with limited budgets. The open source nature allows for transparency and
community-driven development. Developers have access to the source code, enabling
customization of the platform to fit specific needs. However, they often have to rely
on the community for troubleshooting and support. While valuable, open source may
not offer the same level of guaranteed assistance as a commercial provider. In addi-
tion, while open source promotes transparency;, it also means potential vulnerabilities
are publicly visible.

Open core solutions, like Harness.io and GitLab, provide a middle ground. They offer
a free, feature-limited version, akin to open source.

Lastly, OSS can be put into escrow if needed for regulatory requirements or to ensure
continuity of business generally. This provides assurance that in the event the tool
provider goes out of business you will still have access to the tools needed to build,
test, and monitor your application and to recreate your development, testing, and
production environments.

A Platform Approach

Traditional, piecemeal DevOps toolchains often create data silos and hinder visibil-
ity into the entire SDLC. However, a single DevOps platform offers a compelling
solution by providing end-to-end visibility. For example, it enables tracking of every
change, from the initial commit in the code repository to the final deployment on
production servers. This holistic view helps you to identify bottlenecks, pinpoint
potential issues early in the development cycle, and measure the overall effectiveness
of your DevOps practices. Furthermore, comprehensive audit trails provide a clear
record of all activity, simplifying troubleshooting and ensuring compliance with
security regulations.

A unified platform also streamlines governance and unlocks the potential for intel-
ligent automation. Managing governance policies across disparate tools can be
cumbersome and error-prone. A single platform allows you to define and enforce
policies consistently throughout your entire development pipeline. This ensures code
adheres to coding standards, security best practices, and internal guidelines. For
example, you can streamline governance by implementing a policy such as scan
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code before committing, during the CI process, and during the CD process using (your
organizations) approved security scanner. With a unified platform this can be easily
implemented as a template that gets reused.

Additionally, with a complete understanding of the deployment context, including
infrastructure and configuration details, the platform can offer intelligent code sug-
gestions that optimize performance and efficiency. Imagine an Al-powered assistant
that recommends code tweaks based on how the service will be deployed, potentially
saving development time and improving code quality.

Access Control, an Example

As teams assemble a delivery toolchain, it's common to start with individual point
solutions. However, this piecemeal approach can lead to significant operational over-
head. In this section, we’ll look at the example of RBAC to see how a cohesive delivery
pipeline can simplify operations and empower development teams.

Most collaboration tools use role-based access to functionality in some form or
another. Code repositories will support built-in roles, or will include built-in roles
and will allow users to define custom roles. GitHub, for example, defines the roles
Read, Triage, Write, Maintain, and Admin. These roles correspond to levels of access;
the Read role is recommended for noncode contributors, whereas the Admin role
is designed for users who require full access to the project, including sensitive and
destructive actions.

These systems use RBAC, a method of managing access to resources within a system
that centers on three core elements, namely users, roles, and permissions:

o Users represent individuals or accounts requiring access.

« Roles are defined sets of permissions that grant access to specific resources or
actions within the system.

o Permissions are the fundamental units of control, defining what actions a user
can take (like reading, editing, or deleting data).

Users are not directly assigned permissions. Instead, they are assigned one or more
roles. Once a user is assigned a role, they inherit all the permissions associated with
that role. This approach simplifies access management by eliminating the need to
individually assign permissions to every user. Instead, permissions are defined at
the role level, and users are granted access based on the roles they are assigned.
Figure 2-6 illustrates users assigned to roles and the sets of permissions associated
with roles.
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Users Roles Permissions

Figure 2-6. Users are assigned to roles; permissions are associated with roles

Using role-based access is a common pattern that reduces administrative and enhances
security by enforcing the principle of least privilege—users are granted only the permis-
sions necessary for their job functions. Role-based access also helps with compliance, as it
provides clear documentation of who has access to what within the system.

Defining Roles, a Platform Approach

Imagine a DevOps ecosystem consisting of a Git repo, Jenkins, Terraform to manage
an AWS infrastructure, Ansible for configuration management, and Datadog to capture
performance metrics. In a system like this, constructed of several disparate tools, you
might find that you need to define similar roles in each system, and repeatedly add the
same. Provisioning a new developer might take several time-consuming steps. Let’s look
at how an all-in-one platform handles RBAC using a platform approach.

As an example, the Harness Platform has a three-level hierarchical structure. The
three levels, or scopes, are Account, Organization (Org), and Project:

o Account is the topmost entity. It can exercise control and has visibility over the
entire platform.

o Organization is a unit of control where people and projects from the same
business unit can be organized in an independent hierarchy. An organization can
have multiple projects.

o Projects represent the basic unit of collaboration in which users are grouped
together to work on the same task.
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Resource Groups are an RBAC component that define the objects that a user can
access. Objects are any Harness resource, including projects, pipelines, connectors,
secrets, delegates, environments, users, and more. When you assign a Resource
Group to a user, the access defined in the Resource Group is granted to the target
user. Resource Groups can be defined at any scope.

Roles likewise can be defined at each scope. Roles are applied together to Resource
Groups to create a complete set of permissions and access. For example, you can
assign the Pipeline Executor role to a Resource Group that only allows access to
specific pipelines, rather than all pipelines in the project.

Summary

In this chapter, we introduced SCM, a cornerstone of modern software development.
SCM addresses the challenges of team collaboration and managing changes to code-
bases over time. It enables teams to collaborate effectively and manage code changes
over time.

SCM is essential to DevOps and CI/CD workflows, and its role is expanding with the
emergence of Al-native SCM systems. These intelligent systems can generate, review,
analyze, and optimize code, transforming how teams write and manage software. By
automating routine tasks, enhancing accuracy, and surfacing insights, Al-powered
SCM systems accelerate development and improve delivery efficiency.

We also discussed the importance of selecting the right code repository and the benefits
of a unified DevOps platform for cohesive workflows and stronger governance. With
a solid SCM foundation in place, Chapter 3 dives into how continuous integration
automates builds and unit tests to ensure code quality and development speed.
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CHAPTER 3

The Build and Pre-Deployment
Testing Steps of Continuous Integration

Simply put, our modern software delivery practices provide a structure to help us
plan, write, build, test, and deploy software. In Chapter 2, we looked at how SCM
systems help track and manage changes as we write code.

In this chapter, we turn our attention to continuous integration. Figure 3-1 shows a
CI/CD pipeline that we'll look at shortly and return to in Chapters 4 and 8.

Code
repository

Deploy to

Build production

Trigger

Continuous integration Continuous delivery and deployment

Figure 3-1. A CI/CD pipeline

We'll explore the continuous integration pipeline with emphasis on build processes
and pre-deployment testing (static scans, unit tests, and integration tests). We'll
demonstrate how an Al-native approach can accelerate CI through GenAl, agentic
Al, and open standards such as MCP implementations. These technologies enable
automated processes, predictive optimization, standardized context management,
and intelligent testing strategies throughout the build, cache, and testing phases.
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In addition to the key continuous integration steps, we'll review continuous integra-
tion tools and discuss factors to consider when selecting one. You will come away
with an understanding of how to improve efficiency, quality, and security in your
build pipeline.

A Short History of Building and Testing Software

This is a familiar story. In 1947, while working on the Harvard Mark II computer,
a team of engineers discovered a moth trapped in a relay, causing the machine to
malfunction. They removed the moth and taped it into their logbook with the note
“First actual case of bug being found,” thus solidifying the association of “bug” with
software errors. Finding the bug in the machine accurately characterizes testing in
the early days of software development. Developers would write code independently
and integrate it. Testing was typically done manually and ad hoc. Teams focused on
finding the bugs, ridding machines of “the moths” when errors were discovered. Bugs
were typically found in production, resulting in delays and unreliable software.

As software development evolved, testing became more formalized and rigorous,
with a focus on trying to “break” the software to uncover defects. Formal testing
methodologies and standards began to emerge, such as the IEEE 829 Standard for
Software and System Test Documentation (1983).

Structured Software Development and Waterfall Methodologies

Waterfall methodologies introduced a structured approach to software development,
where testing became a distinct phase. Acceptance criteria, defined during require-
ments gathering, outlined the conditions the software must meet. Test cases were
then developed and executed at the end of development to validate these criteria.
Defects were documented and resolved until the software met all requirements. This
formal approach, however, often resulted in a considerable delay between coding
and testing, making early issue detection and resolution challenging and eventually
resulting in a slower time-to-market for new products and features.

Agile and Test-Driven Development

In Chapter 1, we discussed the emergence of Agile methodologies in software devel-
opment, motivated by the inefficiencies and limitations of the waterfall development.
Agile methodologies’ more flexible and responsive development model emphasized
frequent feedback and iterative development, necessitating new testing approaches
that could keep pace with the rapid development cycles. This led to new testing
approaches.

Extreme Programming (XP), developed by Kent Beck, Ward Cunningham, and Ron
Jeffries, was a specific Agile methodology defined by a set of best practices. One
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fundamental XP practice is test-driven development (TDD). In TDD, you write tests
before writing the associated code. BecK’s influential book Extreme Programming
Explained (Addison-Wesley), first published in 1999, popularized TDD to a wide
audience, and early tools like JUnit (for Java) and NUnit (for .NET) provided devel-
opers with frameworks to easily write these types of tests before writing correspond-
ing code.

Writing tests before code encourages developers to think deeply about desired code
behavior, leading to better design and fewer defects. While this concept existed
previously, TDD’s specific approach of writing failing tests first and then coding to
pass them aligned well with Agile’s focus on short cycles and frequent delivery of
working software. This practice redefined the notion of completeness: A feature isn’t
done when the code is working, but when the automated tests are complete and passing.

The automated tests created during TDD provide a safety net, allowing developers to
refactor code with confidence, knowing that any regressions will be quickly caught
by the tests. This enables faster iteration and more frequent releases, which in turn
allows for quicker feedback from customers and stakeholders. The tests themselves
also serve as a form of documentation, clearly articulating the expected behavior of
the system.

Enter Continuous Integration

As we introduced in Chapter 1, CI is the practice of automating the integration of
code changes from multiple contributors into a shared repository, frequently trigger-
ing automated builds and tests to ensure the software remains in a working state. This
complemented TDD.

The roots of CI trace back to the 1990s. Grady Booch first coined the term “contin-
uous integration” in 1991, but it was Kent Beck and Ron Jeffries who truly put it
into practice while collaborating on a project in 1997. Their goal was to address the
“Integration hell” that arose from infrequent code merges, where conflicts and errors
would pile up and become increasingly difficult to resolve.

Early CI systems were often custom-built and tailored to specific projects. One
notable example was CruiseControl, created in 2001 by ThoughtWorks. It was one of
the first open source CI servers, allowing teams to automate the building and testing
of software with every code commit. However, it lacked a user-friendly interface and
flexible job scheduling, leading to the development of Hudson in 2005 by Kohsuke
Kawaguchi. Hudson quickly gained popularity due to its ease of use and powerful
features.

In 2011, a dispute with Oracle led to Hudson being forked into Jenkins, which has
since become one of the most widely used tools for not only continuous integration,
but also continuous delivery and deployment. The popularity of Jenkins can be
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attributed to its flexibility, extensibility, and vast plug-in ecosystem, allowing it to
integrate with various tools and adapt to different workflows.

Continuous Integration Today

Continuous integration has evolved into a foundational practice in modern software
development, and CI/CD systems are the backbone of any delivery pipeline. Through
the continuous integration of code changes, teams have come to depend on the
following advantages:

Reduced integration problems
CI eliminates the dreaded “integration hell” by ensuring developers merge their
code changes frequently, minimizing conflicts and making them easier to resolve.

Faster feedback
CI’s automated build and test processes provide developers with rapid feedback
on their code changes, allowing them to catch and fix errors quickly, thus main-
taining a stable and deployable codebase.

Increased efficiency and reliability
By automating the build and testing process, CI eliminates manual errors and
inconsistencies, leading to more reliable and predictable builds.

Improved transparency
CI dashboards and notifications provide real-time visibility into the build and
test status, allowing everyone on the team to track progress, identify potential
issues, and collaborate more effectively.

Accelerated releases
By streamlining and automating the build, test, and integration processes, CI
enables faster and more frequent releases, allowing businesses to respond more
rapidly to customer feedback and market changes.

In “Continuous Integration in the CI/CD Pipeline”, we'll look at the function of CI in
the delivery pipeline and explore the landscape of CI tools.

Continuous Integration in the CI/CD Pipeline

In Chapter 2, we introduced a CI/CD pipeline, focusing on the relationship between
the code repository and code integration. Lets return to this pipeline and focus
on the continuous integration, that is, the build step and the steps to execute pre-
deployment test types, including static analysis, unit tests, and integration tests.
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The pipeline in Figure 3-2 shows a typical CI process.
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Figure 3-2. CI pipeline triggered by opening a Git PR

This example is triggered when a developer opens a pull request. The goal of this
pipeline is to validate the changes proposed in the PR before the changes are merged
into the main branch. Let’s go through the steps:

1. Code trigger
A developer or an Al agent opens a pull request on the hosted repository (e.g.,
GitHub, GitLab, Bitbucket), which triggers the pipeline.

2. Checkout
The pipeline checks out the source code from the branch specified in the PR.

3. Build
The code is compiled (if necessary) and built into an executable or deployable
artifact.

4. Static analysis
Tools like linters and code analyzers scan the code for style violations, potential
bugs, and security issues.

5. Unit tests
Automated tests that verify the functionality of individual code units are executed.

6. Integration tests
Relatively fast tests may be run to verify the interaction between different compo-
nents of the code.

7. Feedback
The pipeline provides feedback to the developer about the PR status (suc-
cess/failure) and any issues found. This feedback is displayed directly in the PR
on the hosted repository.
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This pipeline detects and notifies developers of any issues within their code. The
build step determines whether the code changes have broken the build. The test
steps answer the following questions: Does this code do what is intended? Does this
code include security vulnerabilities, unsafe operations, potential bugs, bad practices,
deprecated features, or even inconsistent formatting?

The code pipeline provides developers with near-real-time feedback by detecting
issues and running fast tests when pull requests are opened or updated. It answers
critical questions about the code’s functionality, security, and quality. Developers can
then quickly address problems, refine the PR, or confidently merge it when all checks
pass, accelerating development and ensuring a robust codebase.

(In Chapter 4, we'll explore a complementary CI pipeline triggered when a PR is
merged. This pipeline deploys new code to test environments and executes longer-
running test suites.)

Note that while our sample pipeline uses a code change trigger, CI/CD systems
typically offer other trigger options, like scheduled and manual triggers, for more
flexibility.

The Essential Build Step

The build step involves packaging code into a deployable artifact. Examples of
deployable artifacts include container images (used to deploy in Kubernetes/server-
less environments), language-specific packages (such as JAR, npm, NuGet, etc.), and
mobile application packages (such as APK or IPA), among others. For example, code
written in a compiled language, like C++, is first compiled and then linked to create
machine code. Interpreted languages often require a build step to package code into
an intermediate format, such as a Java Archive (JAR) file, for compilation at runtime.
Other interpreted languages, including JavaScript, can be transpiled or minified to
optimize for execution.

Depending on the type of code, this step or series of steps relies on build automation
tools, task runners, or build scripts.

Build automation tools orchestrate the entire build process. Popular examples of
automation tools include the following:

Make and CMake
Make is one of the oldest and most fundamental build tools. It uses a Makefile
to define dependencies between files and the commands needed to build them.
CMake is a newer cross-platform build system generator that can generate Make-
files, Visual Studio projects, and other build scripts. It's widely used for C and
C++ projects.
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Ant
An early Java-based build tool that uses XML to describe the build process. It’s
known for its flexibility and cross-platform compatibility.

Maven
Another popular Java build tool that goes beyond just compilation. It manages
dependencies, builds, tests, and packages projects.

Gradle
A newer build tool that combines the best of Ant and Maven. It uses a Groovy-
based DSL to define builds and offers a more flexible and concise syntax.

Bazel
Developed by Google, Bazel is a powerful build system designed for large-scale
projects. It's known for its speed, scalability, and support for multiple languages.

MSBuild
A build automation platform commonly used with .NET frameworks and lan-
guages like C#, Visual Basic .NET, and F#.

Cargo
Cargo is a package manager for the Rust programming language, used to build,
compile, and manage Rust projects.

Task runners automate repetitive tasks in the development workflow, such as mini-
fication, concatenation, and transpilation. Widely used task runners for JavaScript
include the following:

npm scripts
Part of the Node Package Manager (npm), npm scripts are simple scripts defined
in the package.json file that can automate common tasks like starting a develop-
ment server, running tests, and building for production.

Gulp
A streaming build system that uses JavaScript code to define tasks. It's known for
its speed and efficiency in processing files.

Grunt
Another task runner for JavaScript projects, Grunt uses configuration files to
define tasks. It’s known for its vast ecosystem of plug-ins.

Webpack
A module bundler primarily used for JavaScript applications. It can bundle
JavaScript, CSS, and other assets into optimized files for production.

Continuous Integration in the CI/CD Pipeline | 37



Rollup
Another module bundler thats known for its focus on generating smaller and
more efficient bundles than Webpack.

Lastly, build scripts are custom scripts (often written in Bash, Python, or other
scripting languages) that define the specific steps and commands needed to build
a project. These can be used in conjunction with build automation tools or task
runners.

Prioritizing Quality and Security with Static Analysis

Immediately after we build our code, we run static analysis tools, which may include
a linter. Linters are a specific type of static analysis tool used to check coding style
(ensuring, for example, consistent formatting and naming patterns); for interpreted
languages like JavaScript, linters check for typos, missing semicolons, or incorrect
language usage. These tools examine source code without executing it, similar to
proofreading a document before publishing it. They help identify potential issues
early in the development process. Static code analysis encompasses a range of tech-
niques to evaluate code for:

Potential bugs
Identifies common programming errors, like null pointer dereferences, resource
leaks, or logic flaws

Security vulnerabilities
Detects insecure coding practices that could lead to SQL injections, cross-site
scripting (XSS), or other exploits

Code smells
Flags maintainability issues, like duplicate code, excessive complexity, or unused
variables, suggesting areas for refactoring

Adherence to standards
Enforces coding guidelines and, sometimes, best practices specific to a language
or project, ensuring consistency and readability

By integrating these static analysis tools into the early stages of the development pro-
cess, we not only ensure code quality but also implement a best practice referred to
as shift-left security. Shift-left security refers to the strategy of implementing security
practices in the earliest stages of development. We'll dig into shift-left security and
also explore how AI can help remediate security issues quickly in Chapter 5.
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Automated Testing: Test Early, Test Often

Automated testing is fundamental to the CI/CD pipeline. After our example pipeline
runs static analysis checks, it executes unit and integration tests against new code.
Let’s look at these test types:

Unit tests
These tests validate the smallest isolated pieces of code (units), such as functions
or methods, to verify that they behave as expected in isolation. Imagine a simple
weather application that fetches weather data from an external API, processes
it, and displays it to the user. Unit tests might test functions that process raw
weather data, validating that they correctly convert the data into the desired
formats. The tests validate the conversion logic alone.

Integration tests

These tests focus on verifying the interactions between software modules, ensur-
ing proper communication and data exchange. Integration tests are relatively
fast, often conducted after unit testing, and, like unit tests, help identify issues
early. An integration test for the same weather app might focus on how the
data fetching and processing modules interact. These tests could verify that
the app correctly retrieves and handles weather data from the API, including
error scenarios, using partial mocking to simulate real-world API responses.
Unlike unit tests, which isolate components, integration tests assess how multiple
components work together. Integration tests that are used early in the pipeline,
such as in our example pipeline, should avoid slow operations such as accessing a
database, file system, or other external systems.

Unit and integration test frameworks are numerous and vary by language, for
example:

Java
JUnit 5 and TestNG are frameworks for unit testing. Mockito and Spring are used
for Java integration testing.

JavaScript
Jest and Mocha for JavaScript are widely used for unit testing. Jest also supports
integration testing.

Python
pyTest and pyUnit (UnitTest) are options for both unit and integration testing.

.NET
NUnit and xUnit for .NET are options for unit testing, whereas Moq and
NSubstitute are commonly used for integration testing.
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Ruby
RSpec supports both unit and integration testing for Ruby.

Mobile (i0S/Android)
XCTest for iOS and Espresso for Android are standard bearers for mobile unit
and integration testing.

Unit and integration tests act as a first line of defense, alerting developers to potential
bugs or regressions in their code. These quick, automated checks are just the begin-
ning of our testing strategy. In Chapter 4, we'll look at a subsequent pipeline that is
triggered when the PR is closed and merged.

Thoroughly testing each unit of code, including all possible scenarios, results in a
large but crucial suite of tests—even for seemingly simple code. However, since unit
tests are isolated and don't rely on external resources, they execute rapidly.

Our pipeline prioritizes these speedy unit tests as the foundation, followed by integra-
tion tests that verify how different components work together, and finally, a smaller
number of comprehensive end-to-end tests that simulate real-world usage.

In “The Test Pyramid”, we'll look at the Test Pyramid framework, which illustrates
how to balance different test types for optimal software quality.

The Test Pyramid

The Test Pyramid provides a model for structuring our tests strategically, prioritizing
different types based on their scope and speed. While the Test Pyramid is sometimes
depicted with specific test types at each layer, we prefer to conceptualize layers that
encompass broad classes of tests, as shown in Figure 3-3.
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Figure 3-3. Large sets of fast tests make up the base of the Test Pyramid; smaller sets of
slower tests form the higher layers

At the base of our pyramid are pre-deployment tests, which include types like unit
tests, integration tests, and static scans. These tests are small and execute quickly.
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Integration testing can refer to a range of test strategies. Integration tests that don’t
interact with external systems like databases and network services are fast and are
included at this level. The wide pyramid base reflects that the suite of these types
of tests should be large and, ideally, cover the complete codebase. Tests should be
designed to provide fast feedback to the developer.

Moving up the pyramid, we depict the middle layer as including any type of tests that
we execute against deployed code in a pre-production, test environment. Generally,
these tests are typically slower than the ones mentioned above but provide valuable
insights into how the system functions as a whole.

At the peak of the pyramid, we find manual tests. These are slow and labor-intensive
and occur after the code has been vetted by layers of automated testing.

Embracing the pyramid approach allows teams to balance speed, cost, and effective-
ness in their testing efforts. By focusing on a solid foundation of small and fast tests
and supplementing them with strategic testing against deployed code, we can achieve
comprehensive test coverage while minimizing the time and resources required.

A robust testing strategy is key to a streamlined pipeline, accelerating the delivery
of high-quality releases. In “Continuous Integration Tools” we'll consider how the CI
tool choice can prioritize that factor.

Continuous Integration Tools

Effective CI processes are essential for modern development teams. In this section,
we'll look at legacy CI tools and the features that characterize modern tools.

A major national retailer—a client of ours—anticipating a surge in digital demand
found itself at a crossroads. Its legacy CI/CD tools, including Jenkins, were fragmen-
ted across client web, mobile, and backend service teams, causing long build times
that cost the company a staggering $500,000 annually in idle developer time. These
tools not only stifled innovation but also posed significant security risks, further
exacerbated by the $800,000 spent yearly on maintenance and custom scripts. This
substantial investment diverted resources away from enhancing the customer expe-
rience. Faced with mounting challenges and escalating costs, the retailer sought a
unified CI/CD platform to streamline operations, accelerate innovation, and fortify
security.

The company’s compounding challenges shed light on the inherent limitations of
Jenkins, especially as organizations scale and digital demands intensify. Let’s look at
some of those limitations.
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Jenkins Considered

Jenkins deserves credit for bringing continuous integration into the mainstream. An
open source automation server, Jenkins leverages a vast ecosystem of plug-ins that
extend its functionality and features and give users the ability to customize their
pipelines endlessly. The Jenkins plug-in marketplace is a central repository where
users can find and install thousands of these community-developed plug-ins. The
Jenkins community is large and its documentation is extensive. It is an adaptable
solution for diverse development environments.

While Jenkins remains valuable for legacy systems due to its specialized plug-ins
(e.g., mainframes), modern CI pipelines demand more. Today’s development envi-
ronments require CI tools that deliver speed, security, collaborative workflows, and
native integration with cloud technologies across multiple providers, Kubernetes
orchestration, and containerized applications. The following sections explore specific
challenges that make Jenkins less suitable for these modern requirements.

Plug-in complexity

The flexibility and extensive plug-in ecosystem of Jenkins often leads to a complex
and fragmented architecture, hindering maintainability and increasing developer toil.
The reliance on Groovy scripts for pipeline customization can make troubleshooting
and updates cumbersome, especially as the number of pipelines and their complexity
grows.

In addition, modern CI/CD solutions often embrace the “pipeline-as-code” para-
digm, using declarative languages like YAML to define pipelines. This approach is
generally considered more straightforward and maintainable than the scripting-heavy
approach of Jenkins. YAML-based pipelines are generally more human-readable
and easier to maintain (there might be exceptions) than Groovy scripts, which can
become complex and harder to debug as pipelines grow in size and complexity.
Defining pipelines as code allows them to be stored in VCSs alongside the applica-
tion code. This ensures that pipeline changes are tracked, reviewed, and auditable,
enabling better collaboration among team members. Thus, the pipeline-as-code
approach allows for better version control, collaboration, and easier troubleshooting.

Lastly, the need to manage a multitude of plug-ins, each with its own configuration,
introduces maintenance overhead. Team members find themselves spending valuable
time on mundane tasks like resolving plug-in conflicts, updating dependencies, and
deciphering cryptic error messages. This detracts from the focus on innovation and
core development, slowing down innovation and delivering features.
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Scalability challenges

The architecture of Jenkins, primarily designed for single-server setups, often strug-
gles to scale efficiently as the number of jobs, pipelines, and users increases. This can
lead to performance bottlenecks, slower build times, and overall system instability.
While Jenkins offers distributed builds and clustering options, setting up and main-
taining these solutions can be complex and resource-intensive, requiring specialized
expertise and significant overhead. As a result, scaling Jenkins horizontally to meet
the demands of large organizations or high-throughput CI/CD workflows often
becomes a major challenge.

Security concerns

While Jenkins plug-ins provide extensibility, they also introduce potential vulnerabil-
ities. Each plug-in, with its own codebase and dependencies, expands the attack
surface of a Jenkins instance. Monitoring these plug-ins for vulnerabilities and ensur-
ing timely updates becomes ongoing overhead for administrators. Furthermore, con-
figuring Jenkins security, including user permissions, access controls, and network
configurations, can be intricate. Misconfigurations can expose the system to unau-
thorized access or malicious activities. The dynamic nature of the plug-in ecosystem
and the potential for misconfigurations mean you must be vigilant in monitoring
risks and proactive in mitigating risks within your Jenkins environment.

Resource usage and efficiency concerns

Jenkins’s resource consumption can be a significant drawback, especially as the
number of jobs and plug-ins increases. The Java-based architecture (JVM’s runtime
requirements, garbage collection behavior, and framework abstractions) often leads
to high memory usage, and managing numerous concurrent builds can put a strain
on CPU and disk resources. This can result in slower build times, increased infra-
structure costs, and potential performance issues. In larger environments, scaling Jen-
kins horizontally can become complex and resource-intensive, requiring additional
hardware and careful configuration.

In addition, building Docker images in CI pipelines can quickly become resource-
intensive and expensive, particularly when dealing with large codebases or frequent
commits that trigger numerous parallel builds. Each image requires computational
resources, storage space, and network bandwidth—costs that multiply across envi-
ronments and branches. Similarly, while comprehensive observability provides valua-
ble system insights, implementing excessive logging can create its own problems:
storage costs surge, signal-to-noise ratios decrease, and processing overhead increa-
ses. Finding the right balance between comprehensive coverage and resource effi-
ciency remains a critical challenge.
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Beyond Jenkins

Due to the limitations of Jenkins, companies like our national retailer often outgrow
it and seek modern, fully managed solutions that offer:

Built-in, fully supported building blocks
Modern CI/CD tools offer extensive libraries of built-in, fully supported building
blocks that streamline pipeline setup. This eliminates reliance on community-
maintained plug-ins, ensuring reliability and stability. However, recognizing the
need for customization, most solutions still support extensibility through custom
plug-ins. This empowers teams to automate unique workflows and tailor the
CI/CD environment to their specific needs.

Pipelines define declaratively
Modern CI/CD tools streamline pipeline definition using declarative code like
YAML, making them more accessible and easier to maintain than the Groovy
scripts for Jenkins. This accelerates setup and minimizes errors associated with
manual scripting.

Native support for containerization and orchestration
Jenkins predates the widespread adoption of Docker and Kubernetes, and while
Jenkins pipelines can use plug-ins to work with and orchestrate containers, the
lack of native support often results in cumbersome configurations. Newer tools,
in contrast, seamlessly incorporate containerization and orchestration features,
simplifying the deployment and management of applications in containerized
environments.

In the next sections, we'll look at additional modern features that tools newer than
Jenkins offer. Before we turn our attention to these features, let’s consider a funda-
mental question when considering CI/CD tools: whether to host and manage tools
yourself or select a fully managed solution. The decision will impact everything from
development velocity and cost-effectiveness to maintenance requirements. Given
the importance of mobile, it’s essential to select a CI/CD setup that handles the
complexities of building and deploying mobile applications and we’ll look at the
factors specific to mobile app development to consider.

Hosting options

Organizations have three primary build infrastructure choices for their CI/CD sys-
tems: self-hosted on-premises, self-hosted cloud, and vendor-hosted (cloud). Each
option presents unique benefits and drawbacks that should be carefully considered:

Self-hosted, on-prem solutions
Self-hosting a CI/CD system on-premises gives you complete control and own-
ership over its infrastructure and data. This approach allows for maximum cus-
tomization, enabling tailoring to specific security protocols and organizational

44 | Chapter3: The Build and Pre-Deployment Testing Steps of Continuous Integration



needs. Additionally, some organizations may prefer the one-time payment model
associated with on-prem solutions. However, this approach comes with several
drawbacks. It necessitates substantial up-front investment in hardware and soft-
ware, as well as time and effort to maintain and update. The demand for ongoing
maintenance and potential scalability challenges can strain resources, particularly
for smaller organizations.

Self-hosted, cloud solutions
The self-managed, cloud-hosted model strikes a balance between control and
scalability. Organizations maintain control over their CI/CD software while lev-
eraging the cloud’s flexibility and scalability. This approach reduces the need for
physical hardware and simplifies scaling compared to on-prem solutions.

Cloud-hosted applications run within virtualized environments called hypervi-
sors, and when considering cloud hosting, the type of hypervisor you select will
impact simplicity and performance. The two types of hypervisors to understand
are:

Type 1 bare-metal hypervisor
These run directly on the hardware, offering superior performance and
isolation but requiring dedicated hardware.

Type 2, embedded hypervisors
These run on top of an operating system, providing easier setup and flexibil-
ity but potentially with lower performance.

Bare metal might be better for demanding, high-security setups, while embedded
could be suitable for less intensive needs and budget constraints.

Any cloud-hosted toolset will require ongoing maintenance and updates, and
your organization will remain responsible for managing the cloud infrastructure.
This can lead to challenges similar to those of on-prem solutions, albeit with
potentially reduced up-front costs.

Fully managed, vendor-hosted solutions

Vendor-hosted CI/CD solutions offer a fully managed service where the vendor
handles infrastructure, maintenance, and updates. Your organization focuses on
development rather than infrastructure management. These solutions are highly
scalable, easy to use, and often follow a pay-as-you-go model, making them cost-
effective. However, they may offer less customization than self-hosted options
and potentially limit your organization’s ability to tailor the system to your
specific needs. Additionally, concerns about data security and potential vendor
lock-in can arise with this approach.
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Mobile app development-specific challenges

Having a robust and efficient CI/CD solution is crucial to keep pace with the fast
release cycles and high-quality apps that mobile users expect. Developing for mobile
brings unique challenges: your processes and your CI/CD tools must be able to
manage device fragmentation and frequent mobile OS updates.

When choosing between self-hosted and fully managed CI/CD solutions, consider
that self-hosted solutions, while offering control and customization, can lead to chal-
lenges like physical hardware constraints. In addition, your team will be responsible
for constant maintenance and updates to build environments. These complexities
can lead to unexpected costs. The frequent release cycles of tools like Xcode for iOS
development necessitate regular hardware updates, which can be a significant time
and resource drain for any team.

Fully managed CI/CD solutions, on the other hand, alleviate these pain points by
providing automatic updates to build environments and predictable costs. This allows
your team to focus on building features and improving their apps rather than manag-
ing infrastructure. Moreover, fully managed CI/CD solutions specifically optimized
for mobile development offer mobile-specific integrations and features that stream-
line the development process. Many of these platforms fully manage challenges of
mobile development, such as device fragmentation and OS updates, for you.

Modern Features to Accelerate Software Builds

Returning to our retailer: it researched newer options and decided to move on
from Jenkins and the set of plug-ins and tools pieced together to work with it.
The company selected a unified platform that simplified its toolset while providing
the scalability and cost savings that it required. It was able to consolidate CI/CD
processes for services, client web, and mobile teams onto this single platform. The
new platform eliminated the need for extensive scripting, saving developers time and
enabling them to focus on innovation. It also leveraged AI/ML for testing, resulting
in further cost savings and much faster builds. Furthermore, a unified platform
improved security by supporting security testing early in the pipeline, enabling faster
detection and remediation of vulnerabilities. The efficiency, security, and reliability of
the new platform enabled the retailer to easily handle its digital growth.

In the next sections, we will look at features in modern systems that enable faster,
cost-effective, and secure pipelines.

Accelerate builds with caching

Modern build environments are ephemeral, enhancing agility by providing isolated,
cost-effective, and scalable setups that accelerate development cycles while maintain-
ing consistency across stages of the CI/CD pipeline. However, ephemeral environ-
ments require setting up the entire build process from scratch each time, including
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downloading dependencies, compiling code, and generating artifacts. This is time-
consuming.

Caching is a technique used in CI/CD to store and reuse build artifacts, dependen-
cies, Docker layers, and intermediate results. This significantly reduces build times
by avoiding redundant operations and focusing on building only what has changed,
which not only speeds up development cycles but also conserves computational
resources and energy. Modern CI/CD systems intelligently manage this caching
process, optimizing builds without manual intervention. Caching can be done at
different stages—caching software dependencies, caching Docker layers, and caching
build outputs from tools like Bazel, Gradle, and Maven.

Streamline building, caching, and testing with Al

An Al-native CI solution will seamlessly integrate GenAl, agentic Al, and MCP to
enhance building the software, caching required components, and testing each build.
Let’s look at these enhancements in more detail.

Build phase enhancements. GenAI can automate boilerplate code creation for repeti-
tive tasks (e.g., Dockerfile templates, CI configuration files), reducing manual effort.
It can also analyze historical build data to predict dependency conflicts and suggest
optimal versions, minimizing build failures. Another interesting use case for GenAl
is generating optimized CI pipeline YAML configurations based on project structure,
reducing trial-and-error setups.

Agentic Al can detect build failures (e.g., missing dependencies), and can then
automatically retry with corrected configurations and log root causes. It can also
dynamically scale build resources (e.g., cloud instances) based on workload demands,
balancing speed and cost, and can dynamically split monolithic builds into paralleliz-
able tasks, reducing execution time.

MCP can standardize environment variables, build flags, and toolchain versions
across distributed teams, ensuring consistency and sharing prebuilt artifacts, such
as compiled libraries, between related projects via MCP’s centralized cache, avoiding
redundant builds.

Cache phase enhancements. GenAlI can be used to make the caching techniques more
intelligent. It can predict which dependencies (e.g., node_modules, .m2 artifacts) will
be needed based on code changes, precaching them before builds start. ML models
can be used to identify stale caches by analyzing code diff patterns, ensuring only
relevant artifacts are retained. Agentic Al can flag and purge poisoned caches (e.g.,
corrupted artifacts) in real time, preventing failed builds.

Using MCP in scalable infrastructure has many advantages, including enabling
secure, low-latency cache sharing across CI pipelines via standardized APIs, and
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reducing redundant data transfers by caching intermediate build outputs (e.g.,
Docker layers) between CI runs. MCP can enable secure cache sharing between par-
allel CI jobs through standardized APIs, eliminating redundant builds in monorepo
architectures.

Test phase enhancements. Consider a scenario where a developer modifies a single
line of code in a seldom-used component within a large application. We have high
code coverage with our large and robust set of unit tests; these are the foundation of
our test strategy, the base of our Test Pyramid. Yet, when little code has changed, exe-
cuting the entire test suite results in lengthy, resource-intensive, and very inefficient
test cycles.

Modern tools can mitigate these issues with Al tooling that intelligently selects and
executes only the tests directly relevant to the modified code. This approach signifi-
cantly reduces the time and resources required for testing, leading to faster feedback
loops and more efficient development processes.

Harness Test Intelligence (TI) is an example of this approach. Let’s look at how TI
works under the hood. Three components work together to enable Harness TT:

T1I service
This service uses Al and understands your repository, Git commits, and unit
tests and uses this data to dynamically build a graph that maps the relationships
between code methods and their corresponding unit tests. This graph is continu-
ously updated to reflect changes in the codebase.

A test runner agent
This component communicates with the service and executes tests.

A test step
This is the step you add to your CI pipeline to integrate TT into your workflow.

The TI workflow begins when a developer initiates a pull request and triggers the
pipeline. The TI service analyzes the code changes and compares them to its graph
to identify the tests that need to be executed. It considers not only the code modifica-
tions but also any changes or additions to the tests themselves. This ensures that all
relevant aspects of the codebase are thoroughly tested while avoiding redundant test
runs.

Thus, by focusing on the impacted tests, intelligent testing approaches can signifi-
cantly reduce the testing time, especially in large projects with extensive test suites.
This translates to faster builds and faster feedback for developers, allowing them to
identify and address issues more quickly.
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Al-powered build and test insights

Modern CI/CD tools also leverage GenAl to automate tedious tasks and provide
insights when things go wrong. For example, a tool can autogenerate your pipelines,
analyze code for potential issues, and troubleshoot build and deployment failures in
real time. If a CI build fails, GenAlI can analyze log files, pinpoint the error, and even
suggest potential fixes. This saves your time, reduces downtime, and accelerates the
software delivery process.

Agentic Al can also be used to come up with recommendations to optimize exist-
ing pipelines based on your organization’s golden standards. This feature would be
extremely valuable since organizations, more often than not, optimize their current
pipelines rather than create new pipelines.

Another excellent use case for GenAl is writing intent-based tests. Testing, especially
UI testing, can be extremely manual and flaky if the UT changes. By using GenAl,
developers and QA engineers can simply state the intent of a test and let GenAlI figure
out the steps. We will discuss intent-based testing in detail in Chapter 4.

Finally, AI can also be used to generate data for tests ethically and responsibly.
Some examples include ensuring compliance with GDPR and other regulations when
using production data for model training, maintaining data privacy and security
throughout the data generation process, and using proper algorithms to generate
synthetic data.

Unify CI/CD metrics with enterprise observability

A modern CI/CD solution should be a team player, working with the other key
platforms in your corporate ecosystem, particularly the observability platform that
your organization relies on to understand system behavior, identify performance bot-
tlenecks, and proactively detect and resolve issues before they impact users or busi-
ness operations. Observability platforms include Elastic with Logstash and Kibana,
a popular open source platform, and Datadog and Splunk, well-known commercial
options.

Modern continuous integration tools provide telemetry data to these platforms by
implementing OpenTelemetry, an open source framework. This brings in CI/CD
metrics to enable observability and dashboards that can help you understand what’s
happening and improve build performance and reliability.

Modern CI/CD support for monorepos

Versioning and dependency management become very challenging when managing
complex codebases across several repositories. Monorepos are single repositories
that contain all the code for a project or organization, providing a centralized
approach to managing complex codebases. A single repository simplifies dependency
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management by keeping a single copy of any shared library or component, and sim-
plifies code sharing and reuse across different projects. While monorepos increase the
risk of merge conflicts and require careful design to avoid tightly coupled code, many
large companies have successfully adopted them for massive codebases, demonstrat-
ing that an effectively managed monorepo can provide a very scalable approach.

When adopting a monorepo strategy, its important to understand the unique
requirements that monorepos make of code repositories and CI tools. With poten-
tially hundreds of developers contributing to a large monorepo, managing changes
and pull requests efficiently becomes critical. Teams must be able to define appropri-
ate access by subdirectories, in part to ensure that only relevant reviewers are notified
for each change. Repositories should support subdirectory-specific ownership.

Monorepos require CI systems that enable selective building and testing of changed
components and that support advanced dependency management, caching, and par-
allel execution. Tools like Harness CI support these needs through features like
path-based triggers, which run pipelines only when specific directories in the reposi-
tory change (e.g., triggering service As pipeline for changes to serviceA/), and sparse
checkout, which clones a subdirectory instead of the entire repository. This optimi-
zes resource usage and speeds up feedback loops while maintaining dependency
integrity.

Summary

CI has become an indispensable practice, reducing integration issues, providing faster
feedback, and improving overall efficiency. In this chapter, we looked at modern, fully
managed CI/CD tool features, contrasting the trade-offs with the costs and challenges
of self-hosting. We looked at the importance of prioritizing faster, smaller unit tests
for quick feedback, followed by slower test types for comprehensive coverage. The
continuous integration pipeline we looked at exemplified this practice: in the context
of opening a PR, we build, complete static scans, and then run quick tests to ensure
our code does what it should and doesn’t introduce regressions. We also explored
various ways in which an Al-native CI tool could use GenAl, agentic Al, and MCP to
enhance the build, cache, and test phases of CI.

In Chapter 4, we'll continue with CI/CD and focus on deploying to test environments
and executing the slower tests that evaluate the system’s performance, resiliency, and
end-to-end behavior.
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CHAPTER 4
Deploying to Test Environments

In Chapter 3, we explored the fundamentals of continuous integration, focusing on
early steps in a CI/CD pipeline: mainly, building and pre-deployment testing. We
walked through an example pipeline triggered when a PR is opened, as shown in
Figure 4-1.

Report results
----------------- il \/\/\/

= Pre- :
deployment || .;
e Trigger Build Yests (unit
sl 00 code trigger tests, etc.)

Continuous integration

Figure 4-1. A CI pipeline

This pipeline built and packaged the code, conducted static code analysis, and exe-
cuted early, fast tests including unit and lightweight integration tests, providing build
and test feedback to the PR. These steps ensure that the code in the pull request is
merge-ready, providing confidence that the merged code would function as intended
and would not introduce any regressions. Assuming that the code changes in the PR
prove ready, the developer can merge the PR.

With our new code merged, the next step is getting ready for production by deploy-
ing into test environments and then running a battery of tests. AI and ML tools
are being integrated into the deployment process. These tools help teams make
better deployment decisions, identify potential issues proactively, and streamline the
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verification process. Rather than adding complexity, well-implemented AI actually
reduces the cognitive load on developers while improving deployment reliability.

Between the CI steps and the production release, we are primarily focused on testing.
We want to learn if the release is ready for our users. If it is safe to release, we
want to get it to our users quickly, to enhance the user experience and potentially
drive increased customer engagement and loyalty. If our software has a problem, we
need to detect and address it quickly. That dynamic is a barrier to releasing valuable
updates, and the longer the time between the introduction of the defect and when
it is brought back to the development team, the less likely the work will be fresh
in the mind of the developers involved. They will have to spend more time and
effort familiarizing themselves with those sections of code, making the remediation
more expensive. If a developer is already deep into their next task, that task may be
interrupted and become more expensive to complete as well.

When the release is ready, we will deploy the release into one or more environments
where we can test against running code. It is in these pre-production environments
that we bridge the gap between development and real-world usage, ensuring our
software not only functions correctly but is ready for real-world scenarios.

Figure 4-2 gives a high-level depiction of our entire delivery process. Increasingly,
Al is being embedded throughout this pipeline to strengthen testing and deployment
decisions.

Pre- . Provide :
deployment
Trigger H Build H Plosts Capp p[r}ggll.ﬁ:{tt:n

Continuous integration Continuous delivery and deployment

Figure 4-2. High-level delivery process

In this chapter well look at steps to provision infrastructure, deploy to one or more
pre-production environments, and test against the software. In addition, we will
cover key best practices including:

o Using IaC to create the lower environments that are consistent with production,
but smaller
« Using “production-like” deployments to move your application consistently

« Connecting testing to the deployment pipeline

Selecting where to apply Al to deployments and where to remain cautious
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This stage in the pipeline is a pivotal one, where development and operations con-
cerns intersect. By understanding and implementing these best practices, you'll be
well-equipped to determine the optimal number and types of test environments for
your specific project requirements, regardless of project size or complexity. You will
understand how to balance development velocity and operational stability, ensuring
your software undergoes thorough testing and is release-ready.

Establishing a Unified Deployment Process

As we continue to navigate our delivery pipeline en route to production, we need to
consider the deployment steps and deployment environments that will be necessary.
For a delivery process that is predictable and reliable, we need deployment steps and
environments that are predictable and reliable.

In this section, we’ll cover best practices to give us the predictability and reliability
we're after, from test to production. In Chapter 8 we will cover production releases
and production environments in greater detail.

Deploy Consistently to Every Environment

Automation is the foundation of DevOps, and a key function of our delivery pipe-
line is to automate both the setup of our pre-production environments and the
deployments to those environments. Just as we need to validate our software before
releasing it into the wild, we need to have measures in place to validate how we
deploy our software.

We do this by consistently using the same methods to deploy to pre-production envi-
ronments as we do to deploy to production. This consistency tests our deployment
methods and minimizes the risk of unexpected issues when repeating these steps to
deploy our software into production environments.

The following best practices help provide the predictability we're after.

Use consistent tooling

It’s not unusual for developers to spin up their own lightweight deployment processes
using simple tooling to deploy to test environments, while the operations teams focus
on processes geared to production deployments using enterprise tooling. This incon-
sistency between processes leads to changes being communicated on an “as broken
basis,” where developers will update their process and forget to notify operations until
something breaks.

This approach should be avoided, as it limits the effectiveness of testing in nonpro-
duction environments and leads to duplicated effort in automation scripting. Instead,
adopt a unified toolset for all deployments.

Establishing a Unified Deployment Process | 53



One way to encourage consistency is to offer developers easy, premade template
pipelines known as “golden pipelines” or “paved roads.” We will examine this in more
detail in Chapter 10. At a minimum, your developers and operations teams need to
agree on a common set of tools for performing deployments.

Use consistent pipeline steps and deployment strategies

Whether you're using your CI/CD tool or custom deployment scripts, the sequence of
actions should remain consistent across environments. Advanced deployment strate-
gies like canary or blue-green deployments are typically selected based on derisking
production deployments. If your production environment utilizes these strategies,
replicate them in your pre-production environments. Similarly, if you were to use
feature flags to release individual features in production, use feature flags to roll
out the features in test environments. This consistency minimizes the chance of
introducing discrepancies or oversights during deployment.

We'll cover production deployment and these progressive deployment strategies more
thoroughly in Chapters 7 and 8. For now, note that the steps and strategies you use
should be replicated at every level. While a test environment may be smaller due
to cost or resource constraints, deploy as if it were a production environment. For
example, a rolling deployment in production might deploy two nodes at a time to
10 targets, while in a test environment you could deploy one node at a time to 3
targets. This approach ensures that your production deployment steps and strategy
are thoroughly tested with each version deployed to the test environment.

In Chapter 7, we will examine in depth how Al techniques can verify that a deploy-
ment is not causing trouble in its new environment. Those same approaches should
be used in lower environments to validate that they are working and protect our tests
from being run against a faulty install.

Use parameterization for differences

Inevitably, variations will exist between environments. Target names, service URLs,
and passwords may differ. Instead of creating unique deployment scripts for each
environment, leverage variables to accommodate these differences. This allows you
to maintain a single, adaptable script or pipeline that can be tailored to the specific
environment at runtime.

By being consistent in deployment, you’ll create a robust and reliable delivery pipe-
line that instills confidence in your team’s ability to release software seamlessly and
efficiently.

Accelerate pipeline creation with Al

In Chapter 3, we discussed automatic pipeline creation. Templating remains a good
pattern—you want your Al to leverage your organizations templates and pull in
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the correct adjustments and variables for your project and team. Whether you or
an Al are creating or maintaining pipelines, the less that pipeline code needs to be
managed, the better.

Leverage Infrastructure as Code for deployment consistency

We want consistent and predictable environments to deliver our release to produc-
tion. IaC gives us an approach to not only achieve consistency but also control our
configuration with as much care and control as we do our code resources. At its core,
IaC treats infrastructure configuration like software code.

Engineers make changes to the IaC code locally and test them in their development
environment. These changes are then committed to the VCS, just like application
code. By managing our IaC, we leverage these features of our VCS and CI/CD
pipelines.

The as-code nature has made IaC a DevOps area that quickly benefited from large
language models. Al coding assistants generate and explain IaC code well, lowering
the barriers to entry for developers and infrastructure professionals adopting new
IaC languages. For major cloud providers with access to performance data from
environments or DevOps platforms that combine cloud cost features with ITaC man-
agement, future code generation tools will likely incorporate the following runtime
optimizations based on live workloads:

Collaboration and code review
Version control enables multiple team members to work on files simultaneously
and manage conflicts. We can define and enforce policies to require code reviews
of our infrastructure configuration changes.

Branching and experimentation
Version control allows you to create branches for experimenting with different
configurations without affecting the main production environment.

Traceability and auditability
A VCS provides a complete history of changes to your configuration settings.
The commit messages and change history help you understand why your systems
evolve, and audit trails are important in supporting compliance with security
frameworks.

Rollback and recovery
If an infrastructure configuration change causes problems, you can quickly
revert to a previous working version, minimizing downtime and impact on your
systems. In addition, in the case of a catastrophic failure, you can use your
version-controlled configurations to restore your systems to a known working
state.
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Automated testing
Delivery pipelines can run automated tests on the IaC code, including syntax
checks, security scans, and compliance tests. The changes are then applied to
the staging environment for integration testing, and finally, they’re promoted to
production, typically using a careful rollout strategy.

Security
Version control can help enforce security policies and controls around configura-
tion changes, ensuring that only authorized personnel can make modifications.

Consider a scenario all too familiar to many in the tech industry: an application
works flawlessly in development and runs smoothly in staging, but descends into
chaos when deployed to production. This discrepancy often stems from inconsisten-
cies in infrastructure configurations across environments. With IaC configuration
definitions you can ensure that every environment, from development to production,
is provisioned identically.

This methodical process ensures that your infrastructure evolves in a controlled,
predictable manner. It eliminates the “worked in QA” problem by removing unex-
pected differences between environments. By treating your infrastructure with the
same respect and rigor as your application code, you gain consistency, reliability, and
agility.

IaC offers several advantages beyond control and consistency. With a single com-
mand, you can spin up new environments that are exact replicas of your existing
infrastructure. This not only makes your processes repeatable but also serves as accu-
rate, living documentation. Because environments are easily created and destroyed,
you can tear them down when not in use, saving resources and reducing costs, with
the confidence that they can be recreated effortlessly.

To implement IaC effectively, you need the right tools, and several popular options
are available. Terraform and its more open fork, OpenTofu, use a cloud-agnostic
approach. If youre all in on a particular cloud provider, native tools like AWS
CloudFormation or Azure Resource Manager might be more appropriate.

Leverage Git Workflows with GitOps

GitOps is a newer and increasingly popular approach to deploying software that
builds on the capabilities of code repositories. With a GitOps approach, you describe
the desired state of infrastructure in version-controlled configuration. This descrip-
tion is declarative. GitOps tools include an agent that regularly reconciles the actual
environment and the desired state described in Git-controlled configurations. Instead
of running a script to directly deploy software, you instigate a software deployment
by updating the configuration in your code repository. This approach and GitOps
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tools are typically used in Kubernetes environments to orchestrate containerized
applications across clusters of machines.

With this approach, you rely on your code repository to enforce security, provide
governance, and implement your organizations policies, such as requiring oversight
through code reviews and approvals. Your updates are traceable and auditable. You
can collaborate, experiment, and roll back the configuration updates used to deploy
software. Once you make an update and merge it, the GitOps reconciliation agent
does the rest, picking up the updates and implementing the changes to the target
environment.

The approach has gained traction because managing the intricate configurations
describing complex orchestrated cloud systems is an application well suited to code
repository capabilities. In addition, GitOps addresses the problem of environment
drift; that is, the environment is changed operationally from the desired state. The
reconciliation agent automatically detects and remediates, guarding against inconsis-
tencies in environments.

While a GitOps approach is powerful, deploying with a GitOps approach within a
CI/CD delivery pipeline is more complicated than simply pushing your app updates
with a script. With GitOps, your pipeline must automate the following steps:

1. Retrieve configuration from your code repository.
2. Update the configuration to reference the latest version of your application.

3. Merge the updated configuration back to Git.

GitOps reconciliation then takes it from there.

You may also encounter complexities with applications that are geographically repli-
cated across multiple clusters. Maintaining consistency and synchronizing across
clusters can be difficult due to many GitOps reconcilers being optimized for deploy-
ing applications to a single cluster. You may need to balance the need for a single
source of truth with the reality that certain configurations will need to be tailored for
specific clusters. Commercial GitOps tools often provide orchestration and visibility
in these more complicated scenarios, extending what open source provides.

Despite these challenges, the benefits in terms of collaboration, traceability, and
automated reconciliation make GitOps a compelling choice for organizations that
extensively leverage Kubernetes.
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Continuous Delivery, Deployment,
and Test in the CI/CD Pipeline

Now that we have an understanding of the importance of predictable and reliable
deployment steps and environments, let’s return to our delivery pipeline. With our
new code merged, we now want to deploy it into one or more environments where
we can test against running code. Figure 4-3 shows an example pipeline.

Code
repository

Code trigger:
merge PR

Rerun pre-
Build [ deployment
tests

Deploy to
production

Continuous integration
Continuous delivery and deployment

Figure 4-3. Testing our code in pre-production environments

In this section, we'll focus on the pipeline:

1. Code trigger
The pull request is reviewed, approved, and merged into the main branch. In this
pipeline, the PR merge triggers the pipeline.

2. Continuous integration
The pipeline repeats the continuous integration steps we reviewed in the last
chapter, checking out, building, and executing continuous integration tests.

3. Provision infrastructure
The pipeline provisions the pre-production environments required for testing.

4. Deploy to one or more pre-production environments
The pipeline deploys the app to one or more pre-production environments.

5. Tests against the deployed app
The pipeline tests against the deployed software. Various types of tests can be
run, depending on the type of software and the priorities of your organization.
We'll look at a number of different types of tests in the following section. The
pipeline can be configured to run multiple types of tests in parallel or sequen-
tially. Some tests can reuse the same pre-production environments, while others
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may necessitate pre-production environments tailored to the requirements of the
tests. Generally, faster tests are prioritized over slower tests.

6. Deploy to production
The last step is to deploy, or promote, to the production environment. Depend-
ing on your delivery process, the decision to deploy to production can be auto-
mated or require manual approval. We'll look at promotion strategies and steps
to deploy to production in Chapter 7.

Continuous Delivery Versus Continuous Deployment

The terms continuous delivery and continuous deployment are often used inter-
changeably. Continuous delivery is generally and loosely defined as a process that
automates the software release up to the point of production deployment, requiring a
manual approval before changes go live. Continuous deployment, on the other hand,
fully automates the entire process, including deployment to production.

The confusion arises because pipelines automate deployments to intermediate test
environments. Some use “continuous delivery” to encompass these automated inter-
mediate deployments, while others reserve it for processes that don't deploy automat-
ically to any environment. Similarly, “continuous deployment” is sometimes used
broadly to describe any automated deployment, including to test environments.

To avoid confusion, we prefer to use “continuous delivery” broadly, to refer to the
process of frequent delivery of software to its users. Reducing the number of manual
steps will tend to make this process more frequent. When we discuss deployment
steps in a specific delivery process, we include details about the deployment environ-
ments (intermediate or production) and type (automated or manual).

Types of Testing

Test environments are crucial for running tests, but the choice of tests depends
heavily on the type of application being developed, the intended users, software archi-
tecture, and budget and time constraints. For example, in general, testing priorities
for a website will differ significantly from those of embedded software or a web API.
Testing priorities will vary between software services in a highly regulated industry
versus software that must be intuitive and compelling to a large retail user base. Your
selection of tests and their frequency can substantially impact application quality,
infrastructure costs, and overall delivery speed.

Al-powered testing platforms increasingly use ML to optimize testing strategies.
These platforms analyze historical test data, code changes, application architecture,
and past deployment issues to intelligently select and prioritize tests. For example,
Al-driven test selection tools identify the most impactful tests to execute for each
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code change, significantly speeding up test cycles. Vendors such as Harness, Tricentis
SeaLights, and CloudBees Launchable are using AI and ML techniques to optimize
test selection.

Here are common types of tests that occur during this phase:

End-to-end or functional tests

These tests are the most straightforward test type, simulating real-world user sce-
narios and validating the entire application flow from start to finish, to determine
if the software does what is expected. These tests may be automated or performed
manually. Modern teams automate more. Selenium is a commonly used open
source test automation framework that many commercial tools also build upon.
ML has been present in these tools for quite some time, but we are increasingly
seeing a shift toward an AI-first approach, which we’ll dive into shortly.

Al-powered testing

AT can automatically generate test cases, identify edge cases, and learn from
previous test runs to focus on areas most likely to have issues. Al testing is likely
to complement or be a part of your end-to-end (functional) test programs.

APIJ tests

A form of functional testing is API testing, which validates that an API works
as expected. In distributed systems, services interact over APIs, so ensuring
that APIs are performing well is important. Common API testing frameworks
include SoapUI, Postman, Insomnia, and Swagger. Al-enhanced API testing goes
beyond simple validation to intelligently explore API behaviors and edge cases.
These systems can automatically generate API test scenarios by analyzing API
documentation or actual usage patterns.

User experience tests

Developers, testers, and product managers may evaluate new features to make
sure they are easy and intuitive to use. While this may test the same systems as
end-to-end testing, the focus is on assessing usability.

User acceptance tests

These tests are typically done as a final check to ensure that the software meets
the end user’s needs, that it meets the requirements, and that it functions as
expected. User acceptance tests can include many other types of tests, from end-
to-end to user experience and performance. These tests are done from the end
user’s perspective with the purpose of providing a final and formal acceptance of
the software release.
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Accessibility tests
These tests ensure that our software is usable for people with disabilities such as
visual, hearing, or cognitive impairments in order to serve our users and comply
with legal, contractual, and regulatory requirements. Open source accessibility
scanners include Lighthouse and PallY. Companies, including accessiBe, are
beginning to offer Al-augmented testing and remediation tooling as well.

Localization tests
Localization testing is important for software targeting a global audience. It
involves a comprehensive assessment of the product’s linguistic accuracy, cultural
appropriateness, and functional correctness within the specific target locale.
This includes verifying translations, adapting visuals to cultural sensitivities, and
ensuring the software functions correctly with local formats and regulations.

Performance tests

These tests simulate workloads to assess the speed, responsiveness, and stability
of the application under different conditions. The tests help identify performance
bottlenecks and ensure the application can handle expected traffic. This type of
testing is critical for applications with seasonal peaks to ensure that the release
can withstand peak demand. Apache JMeter, Gatling, and Grafana k6 are often
used for performance testing. AI can leverage the data from performance testing
to recommend resilience tests to run. These Al-powered performance testing
systems can now detect performance anomalies with much greater accuracy
than traditional threshold-based approaches. The systems establish baseline per-
formance patterns and identify subtle deviations that might indicate looming
issues. More advanced platforms can even pinpoint the specific components or
code changes responsible for performance degradation by correlating test results
with code changes and architecture maps.

Resilience tests
In modern distributed systems, a production system has many components. The
one certainty is that something is going to break somewhere. Resilience testing,
also known as chaos testing, evaluates if the software can remain useful when
services it relies on fail. We'll return to resilience testing in Chapter 6.

Security tests

These tests identify vulnerabilities and weaknesses in the application that could
be exploited by attackers. They help ensure the security and integrity of the appli-
cation. Dynamic application security testing (DAST) is a specific type of security
testing that automates penetration testing, inspecting your running application
for security flaws. DAST attempts to attack your applications like a malicious
user would. ZAP is a commonly used free tool, while commercial offerings from
Veracode and Checkmarx are popular as well. We'll return to security testing in
Chapter 5.
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While the test types outlined above are commonly used, it’s important to note that
there is no one-size-fits-all approach to software testing, and terminology can vary
across organizations. The specific tests you choose and how you categorize them
will depend on your unique development process, application architecture, and risk
tolerance.

Intent-Based Functional and End-to-End Testing

Traditional approaches to automated functional and end-to-end testing often rely
heavily on scripted tests or simplistic record-and-playback methods. While conve-
nient initially, these tests quickly become brittle and difficult to maintain, breaking
whenever minor UT changes occur. This fragility creates a high maintenance burden,
slows down development, and frequently results in teams abandoning automated
testing entirely or limiting its scope.

An emerging Al-first approach to testing, known as intent-based testing, aims to
overcome these challenges. Instead of explicitly scripting or manually recording each
test step, teams express the intent of their test scenarios, describing the outcome
they expect rather than the exact sequence of actions to achieve it. Al-native testing
tools then dynamically generate and execute these tests by interacting with your
application, much like a human user would.

For example, instead of recording precise clicks and form inputs for an e-commerce
checkout process, you could simply describe the goal: “Purchase a product using
a credit card” The AI would automatically determine the most appropriate
paths through your application, interacting with buttons, forms, and workflows
intelligently.

An important benefit is improved resilience of the tests—addressing the challenge of
Ul-based tests being brittle. If the UI changes later, the AI adapts to the new layout or
modified interactions, significantly reducing maintenance overhead. Test automation
tools have tried to automatically repair tests for many years, using techniques from
tracking DOM objects to implementing ML. Shifting to understand the intent behind
the test, and attempting to regenerate the entire script in response to a UI overhaul,
brings a new level of recoverability.

These tools may also help compensate for the shift from professional testers toward
asking developers to own these tests. The tools can recommend additional tests
and assertions related to the existing tests, which may help an optimistic developer
remember to check for corner cases and bad user behavior.

Advanced use cases for Al include migrating tests written in traditional tools such as
Selenium and Playwright into intent-based testing tools, and generating and running
not just individual tests but also entire test cases.
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Traditional Testing Versus a Hollowing-Out-the-Middle Approach

In traditional software development, testing is often compartmentalized with dedica-
ted environments for each type. This ensures, for example, that manual user experi-
ence testing is never impacted by concurrent automated performance tests. However,
this isolation comes at a cost: a proliferation of test environments is expensive and
can be time-consuming to manage. When a single new release must clear numerous
stages, the approach becomes increasingly unsustainable in the face of accelerating
release cadences and growing application complexity.

As you try to accelerate your release cadences and your application becomes more
complex, it becomes increasingly unsustainable to test across many stages, with each
stage requiring a new environment. Figure 4-4 illustrates this staged approach.

Pravision Run e
Triggerand | |infrastructure| | some UAT and
build code; for pre- i beta
run pre- production ! testingin
deployment env. (first i last test
tests QA): deploy env.
to this env.

Deploy to
production

Figure 4-4. Traditional testing through several pre-production environments

On the other hand, a more modern testing approach challenges this model. This
approach is sometimes referred to as “hollowing out the middle” Instead of multiple,
sequential test passes across multiple environments, there are fewer environments
where tests run concurrently. This practice advocates shifting testing both to the left
and to the right.

We introduced shift-left security in Chapter 3. By moving SAST, SCA, dependency
scanning, and secrets detection into pre-deployment steps, our sample pipeline exem-
plified shift-left. We incorporated these crucial tests early such that passing them is a
prerequisite to merging code. Unit and other early testing, completed as part of the
merge workflow, also represent a shift-left approach. This helps catch issues sooner,
reducing the need for extensive downstream testing.

A shift-right approach advocates executing some types of tests, traditionally late-cycle
test types, against the new release in the live, production environment. Instead of
provisioning and moving a release from one or more pre-production environments
and using these isolated environments to test, we deploy the app straight to produc-
tion and validate there. For example, load testing can be difficult to execute well and
the environments may need to be large. Deploying to a portion of prod, applying
load to that targeted infrastructure, and measuring the impact using production
observability tooling can be a viable alternative to traditional load testing. Figure 4-5
illustrates this approach.
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Figure 4-5. A “hollow-out-the-middle” approach to testing

We can see that removing the need for pre-production environments that closely
mirror production can save costs and maintenance toil, but how can extensive
testing in a production environment be safe? Shift-right relies on new tools and
production deployment practices. With advanced traffic management, observability
tools, and containerization, many organizations have found that these tests can in
fact be performed in the production environment with minimal side effects. Beyond
significantly cutting infrastructure expenses, this approach has the advantage of yield-
ing more accurate results. We'll discuss these new tools and production deployment
practices in Chapter 7.

Hollowing out the middle optimizes testing and is one modern strategy that organi-
zations are taking to fuel faster delivery. By redesigning our approach to how we
move our software between environments, we can similarly accelerate our delivery
process. In “Promotion Between Environments”, we'll look at how and why we
should promote our releases between environments.

Promotion Between Environments

In the previous section, we looked at a typical delivery process that required moving
our software through multiple stages of testing, with each stage of testing conducted
in a separate pre-production environment. In this process we want to promote our
release as quickly and intelligently as possible, meaning our new version of software
should advance to the next environment and stage without any undue delay.

Al is beginning to play an increasing role in this promotion process, analyzing
test results, performance data, and deployment history to make intelligent decisions
about when and how to promote releases. These systems can evaluate multiple
metrics simultaneously, detect subtle patterns that might indicate risks, and become
increasingly accurate over time through ML.

Ideally, our promotion process is simple: if the tests in one stage pass, our release
is immediately promoted to the next environment, and that environment is ready
and available for the next round of testing. The promotion decision is automatic and
instant and simply based on whether the previous stage of testing passed. In practice,
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release promotion, even between test environments, becomes a bottleneck in many
delivery processes. This can be attributed to several factors:

Promotion decision is by committee
Promotion decisioning is not automated and requires a group review and appro-
val of test results.

Promotion relies on tedious manual steps
Manual intervention to trigger the next deployment creates bottlenecks.

Insufficient number of testing environments
If the next environment is occupied with testing another version, the new version
must wait.

In this section we'll look at mitigations to address these issues. The practices we'll
introduce help us move our release from one pre-production environment to the
next, and also apply to promoting our app into production. However, the final release
into production has some special considerations, which will be addressed in more
depth in Chapter 7.

From Decisions by Committee to Automated Decisions

Human decision making, whether it's a committee huddle or a trusted individual’s
call, inevitably introduces delays in promoting your release from one stage to the
next. Team members need to be alerted, then take time to analyze testing results
before reaching a decision and taking action. While this might not always be labor-
intensive, it undoubtedly slows things down.

While traditional automation has relied on simple pass/fail criteria, Al systems offer
more sophisticated decision-making capabilities. Modern AI promotion engines can
evaluate hundreds of metrics simultaneously, looking beyond simple test results to
analyze system behavior holistically. These systems might consider factors like perfor-
mance trends, error types, user impact assessments, and even code change risk levels
based on past deployment patterns. By weighting these factors appropriately, Al can
make more nuanced decisions than traditional rule-based approaches.

Our aim is to streamline this process by automating the decision to promote your
release. We'll revisit this topic in detail in Chapter 7.

From Manual to Automated Promotion

Once you've automated the decision-making process, the actual promotion of your
build becomes significantly easier. The key is to ensure that the deployment to the
next environment is triggered immediately after the decision to proceed has been
made, eliminating unnecessary wait times.
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How you implement this automation depends on your chosen continuous delivery
tooling. Some tools offer end-to-end pipelines with simple, built-in triggers for seam-
less promotion between stages. Others allow you to call another pipeline or job
as a step within your current pipeline, offering flexibility but potentially requiring
more configuration. While the ease of implementation varies, achieving this level of
automation is almost always possible.

GitOps-style deployments, however, often present a unique challenge in this area, as
we discussed in “Leverage Git Workflows with GitOps.” To execute the deployment,
we need to automate the Git changes to the GitOps configurations instead of relying
on manual updates. To do so, we will typically automate the pull request step and its
approval directly within our CI/CD pipeline. We maintain Git as the source of truth
that GitOps is known for while automating each step of our release promotion.

For example, imagine a scenario where your pipeline has determined that a build is
ready for promotion to the User Acceptance Testing (UAT) environment. When our
pipeline is set up to generate the necessary pull request, trigger any required appro-
vals, and (once approved) merge the changes into the main branch, our pipeline
initiates the GitOps deployment to the UAT environment seamlessly.

Break the Environment Bottleneck

A final challenge in automating promotion between stages and environments in
your delivery process is determining the “right” number of environments that you’ll
need. Having too many environments becomes a financial burden due to the cost of
maintaining their underlying infrastructure, while having too few creates bottlenecks
and delays in moving releases toward delivery, as the process waits on resources to
become available.

Ephemeral environments present a common solution to this dilemma. This approach
involves creating environments on demand when needed for testing and promptly
dismantling them once tests are complete. In the pre-cloud era, environment creation
was a laborious process, often taking days. Now, thanks to programmable cloud
infrastructure, environments can be spun up and torn down in minutes.

Infrastructure as Code Management (IaCM) tools simplify ephemeral environments.
These specialized CI/CD platforms automate the provisioning, configuration, and
deployment of infrastructure resources using code. Unlike traditional CI/CD tools
focused on applications, [aCM tools manage the underlying infrastructure. With
[aCM tools, you define your desired infrastructure state using declarative code
templates, making configurations more manageable, maintainable, and version-
controlled.
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Ideally, to achieve our goal of “production-like” test environments, the same template
should be used to create both pre-production test environments and production
environments, with adjustments made only to variables. When your pipelines seam-
lessly integrate with IaCM tools, deploying to a “Test” stage automatically triggers
the creation of a corresponding “Test” environment. Once this environment is provi-
sioned and configured with necessary details like IP addresses, passwords, and other
environment-specific variables, the deployment and testing processes can proceed.
Upon completion, the JaCM tool efficiently dismantles the environment, freeing up
resources.

While this strategy offers significant benefits in terms of consistency, flexibility, and
cost reduction, it’s important to note that the environment creation and teardown
process can add a few minutes to the overall test cycle. Therefore, ephemeral environ-
ments might not be the ideal solution for pipelines targeting extremely rapid delivery
cadences, such as those measured in minutes. However, for delivery cycles measured
in hours, days, or weeks, ephemeral environments provide a powerful way to break
bottlenecks, improve consistency, and optimize infrastructure costs.

Summary

In this chapter we continued to navigate our delivery process, focusing on the
continuous delivery steps that follow continuous integration. These are primarily
testing steps, and we reviewed the types of tests that are important for validating
all aspects of our software. We discussed the importance of reliable and predictable
pre-production environments to testing and the best practices to give us these. By
automating all aspects of promoting your release between testing stages, including
promotion decision making, we can dramatically accelerate the delivery of our
software.

After completing testing, there’s only one step left to get our latest software release
into the hands of users: actually deploying to production. We'll return to this step in
Chapter 7. Before we get there, we'll take the next few chapters to discuss how we can
fortify our releases to be more secure, more resilient, and more reliable.
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CHAPTER 5

Securing Applications
and the Software Supply Chain

We've touched on security tools and practices throughout this book as we've navi-
gated the delivery process from SCM to continuous integration and delivery. We
discussed how RBAC and Policy-as-Code (PaC) governance in modern tools help
secure your code repositories and pipelines, and we mentioned the role of early
security testing in continuous integration. We looked at dynamic testing to uncover
runtime vulnerabilities in your applications. This has been a light touch on security.

In this chapter, we'll bring security to the forefront and give it the attention it
deserves in a world where cyberattacks are growing in both frequency and sophisti-
cation. High-profile breaches regularly make headlines, regulations are tightening
globally, and customers increasingly evaluate vendors based on security posture.

With release cycles measured in days rather than months, the traditional model of
security as a final gate before production has become untenable. Instead, we have
shifted the burden “left” toward developers, who must now integrate security practi-
ces into their daily workflows. Developers who are not security experts now bear an
unprecedented burden of security responsibility.

Artificial intelligence promises some relief for this tension. AI-powered security tools
are improving detection accuracy, dramatically reducing false positives that waste
developer time, and even automatically generating remediation code. Rather than
simply shifting the security burden left, AI helps share that burden, providing devel-
opers with expert-level security guidance without requiring them to become security
experts themselves.
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This chapter will cover how the evolution toward Al-native software delivery has
transformed how we approach security—not by simply adding more tools or pro-
cesses, but by fundamentally changing how we identify, prioritize, and remediate
security issues. We'll look at the importance of software supply chain security that is
protecting the tools, processes, and people involved with how software is built and
delivered, from the initial code to the final product. It’s a critical concern as modern
software relies heavily on interconnected components, each presenting potential vul-
nerabilities that could be exploited by malicious actors.

Understanding supply chain concerns and learning to evaluate your SDLC with a
security lens will equip you to put strong security measures in place and better
protect your applications, data, and your organization’s reputation.

Modern Applications and the Cyberthreat Landscape

Building and deploying modern software applications relies heavily on distributed
and complex software supply chains. These supply chains often encompass a vast
network of code repositories, open source dependencies, third-party components,
artifact repositories, and CI/CD pipelines. While this interconnectedness fosters
innovation and accelerates our development cycles, it also introduces security risks
throughout. The expanding attack surface and the potential for vulnerabilities to
propagate throughout the supply chain have made our software supply chains a
prime target for malicious actors.

In this section we'll look at these threats and learn how regulatory compliance frame-
works that govern software supply chains are evolving to address them. Finally we'll
look at how new compliance requirements impact your organization.

The Growing Threat of Software Supply Chain Attacks

The software supply chain encompasses all of the people, processes, and tools
involved in creating and delivering software. It spans the complete lifecycle of soft-
ware development, from the initial code creation to its deployment and maintenance.
It’s a complex ecosystem where each element plays a crucial role in the final product.

The software supply chain is made up of two primary concerns: applications and the
DevOps toolchain, as shown in Figure 5-1.
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Figure 5-1. The software supply chain

Applications risks in the software supply chain

“Applications” here refers to all of the elements of your software, including your
proprietary source code; open source dependencies like libraries, frameworks, and
modules; and the software artifacts produced during the development process.

According to the 2024 Open Source Security and Risk Analysis report by Synopsys,
96% of codebases contain open source components. It’s important to remember that
our organizations are responsible for securing the open source components we use,
just as they are with internally developed code. Because open source usage is so
widespread, we shouldn’t be surprised that over 80% of vulnerabilities found in appli-
cations are from OSS dependencies. A vulnerability discovered in 2021 in a widely
used Java logging library called Log4j is an example of an open source-introduced
threat. This vulnerability allowed attackers to remotely execute code on affected sys-
tems simply by sending a specially crafted string to the application’s log. The exploit
was exceptionally dangerous due to the widespread use of Log4j in applications and
services, leading to a massive scramble to patch and mitigate the vulnerability.

The discovery of a backdoor in the widely used XZ Utils data compression tool pro-
vides another example. XZ Utils, like many OSS projects, is maintained by volunteers
with limited resources for addressing security issues. One trusted contributor was
found to have implemented a backdoor that would have allowed an attacker to gain
administrator privileges to systems running software built with the tool. This utility
is present in most Linux distributions, and was fortunately discovered before the tool
had been widely deployed in production systems.

Modern Applications and the Cyberthreat Landscape | 71



Another emerging threat in the application supply chain exploits the hallucinations
of Al coding assistants. When AI models hallucinate package names, recommending
nonexistent libraries or incorrect package identifiers, they create an opportunity for
attackers. Malicious actors can monitor popular AI coding assistants for such halluci-
nations, and then register these hallucinated package names in public repositories.
When developers attempt to use these nonexistent but Al-recommended packages,
they unknowingly install malicious code. This “hallucination squatting” attack vector
has already been observed in the wild, with researchers finding that common coding
assistants frequently suggest nonexistent packages.

DevOps risks in the software supply chain

The DevOps toolchain includes the suite of tools and processes used to automate the
building, testing, and deployment of your software. This encompasses code reposito-
ries, CI/CD tools and pipelines, artifact registries, and other tools that streamline the
development process such as GitOps and ITaCM tools.

The SolarWinds hack stands as a stark example of how a compromised DevOps
toolchain can be exploited to propagate malicious code. In this sophisticated attack,
threat actors infiltrated the SolarWinds Orion software build system, injecting
malicious code into legitimate software updates. These tainted updates were then
distributed to eighteen thousand SolarWinds customers, granting the attackers wide-
spread access to their networks. This incident highlighted the potential for attackers
to leverage the trust and automation inherent in DevOps pipelines to distribute
malware at scale, turning a routine software update into a devastating cyberattack.

The Codecov supply chain hack in 2021 is another example of a toolchain security
breach, one that impacted thousands of organizations. Malicious actors modified
a Codecov Bash Uploader script (a tool customers use to upload code coverage
data). This modification allowed the attackers to exfiltrate sensitive information, such
as tokens, keys, and credentials from the continuous integration environments of
Codecov’s customers. The breach went undetected for over two months, potentially
exposing sensitive data stored in customers’ continuous integration environments.

A threat that is growing

Software supply chain attacks are not going away. Gartner Research predicts that by
2025, 45% of organizations worldwide will have experienced attacks on their software
supply chains. A security flaw in a line of code, a third-party library, or a tool in your
pipeline can have a ripple effect, compromising the entire software product. Securing
the software supply chain is about not just protecting individual components but also
ensuring the integrity and security of the entire development and delivery process.
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Regulatory Compliance Frameworks That Apply
to Software Supply Chains

Given the increasing threat, governments and regulating authorities have responded
with regulations that aim to address these challenges by establishing best practices,
promoting transparency, and requiring organizations to take proactive measures to
secure their software supply chains. Some of the most important compliance and
regulatory frameworks that have emerged include the following:

United States Executive Order 14028, Improving the Nation’s Cybersecurity
This executive order, issued in 2021, mandates that federal agencies and their
software providers enhance their software supply chain security practices. It
emphasizes the use of secure software development practices, vulnerability dis-
closure, and incident response.

The European Unions Network and Information Security 2 Directive (NIS2 Directive)
This directive aims to establish a high common level of cybersecurity across
the EU. It includes provisions on software supply chain security, requiring organ-
izations to assess and manage risks associated with software components and
third-party dependencies.

NIST SP 800-218, Secure Software Development Framework (SSDF)
This National Institute of Standards and Technology publication offers guidance
for integrating security into the SDLC, including supply chain risk manage-
ment. It provides a comprehensive framework for secure software development
practices.

ISO/IEC 27036-2:2023
This standard offers guidelines for managing information security risks related
to suppliers and the supply chain. It covers various aspects, including supplier
selection, contract management, and performance monitoring.

Payment Card Industry Data Security Standard (PCI DSS)
While not solely focused on the software supply chain, PCI DSS requires organi-
zations handling payment card data to implement secure software development
practices, which include managing supply chain risks.

Cyber Resilience Act (CRA)
This proposed EU regulation aims to enhance the cybersecurity of digital prod-
ucts and services. It includes requirements for vulnerability handling, security
updates, software bill of materials (SBOM), and reporting actively exploited
vulnerabilities within 24 hours of awareness.
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In addition, Quality System Regulation (QSR) (21 CFR Part 820) and General Data
Protection Regulation (GDPR) are frameworks that regulate software practices that
indirectly impact software supply chain concerns. The QSR mandates rigorous con-
trols and processes to ensure the safety and effectiveness of medical devices, encom-
passing software components. This includes requiring manufacturers to validate
and control the software integrated into their devices. Similarly, GDPR’s stringent
requirements for protecting personal data necessitate that organizations implement
robust technical and organizational measures, potentially extending to the security of
software and its supply chain, especially if it processes personal data.

These frameworks and regulations contribute to a more secure and resilient soft-
ware ecosystem, benefiting both businesses and consumers. However, the increased
complexity can impact development teams. Understanding these requirements and
integrating them into your processes is critical for successful compliance.

Securing Modern Applications with Shift Left

Against highly motivated hackers, our traditional wait-until-the-end security meth-
ods are not enough. Not only do these measures not provide the protection we
require, but traditional security testing also slows the delivery of our software. To
protect modern applications, organizations must use tools and practices designed
for modern DevOps workflows. In this section we'll look at the challenges organiza-
tions face in implementing security practices. In Chapter 3 we touched on shift-left
security, the practice of implementing security practices in the earliest stages of
development. We'll look at how to use this approach to mitigate risks, as well as
best practices for implementing shift-left security and managing vulnerabilities in a
developer-friendly way.

The Need for Developer-Friendly Shift-Left Security

Rather than waiting until the end of the software development cycle to test the secu-
rity of your application, you must actively address and test security concerns at every
possible stage. This approach not only saves time and effort by avoiding extensive
reworking of the software code later on but also enhances the overall security and
efficiency of the final product. Figure 5-2 contrasts a shift-left security approach with
a traditional application security approach.

It's important to note that effective shift-left security means more than performing
security testing earlier in your delivery process. While this may help save developers
from the cost of context switches that come when returning to code after days or
weeks, it's ultimately not saving work. A truly effective implementation requires
choosing security tools that seamlessly integrate with your CI/CD pipelines. These
tools should not only identify vulnerabilities but also prioritize them based on
severity and provide actionable insights. The tools you choose should normalize and
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de-duplicate findings, to help developers avoid alert fatigue and concentrate on the
most critical risks. This integrated approach ensures that security is absolutely central
to the development process.

Attention ; o
to quality Traditional

quality
model

Plan Develop Test Deploy Monitor
and design and build andrelease  andanalyze

Figure 5-2. Shift-left approach contrasted with a traditional testing approach

Application Security Scanners

There are numerous scanners and tools available to do security testing and analysis,
and many are now enhanced with Al capabilities. Lets look at the most common
categories of these scanners and tools:

Software composition analysis (SCA)
This type of scanner identifies vulnerabilities in third-party components and
dependencies by analyzing software bills of materials (SBOMs) to detect known
vulnerabilities in libraries and frameworks. We'll look at SBOMs later in this
chapter. SCA tools feature significant ML capabilities around the likelihood a
vulnerability can be reached or exploited. Snyk is one popular example of an SCA
scanner.

Static application security testing (SAST)
SAST tools analyze source code for potential vulnerabilities without executing
the application by scanning code for patterns indicative of vulnerabilities, such
as SQL injection, XSS, and buffer overflows. Al is enhancing SAST to reduce the
incidence of false positives, wasting less engineer time. SonarQube, Checkmarx,
and Fortify are examples of SAST tools.

Container scanning
This type of scanning identifies vulnerabilities in container images and their
dependencies by analyzing the contents of container images for known vulnera-
bilities and configuration errors.
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Secret detection scanning
This type of scanning detects sensitive information, such as API keys, passwords, and
tokens, within code repositories and configuration files. With Al, secret detection
tools are getting better at detecting obfuscated secrets and distinguishing between
actual credentials and test data, reducing false positives and the associated toil.

Dynamic application security testing
This testing method analyzes a running application to identify vulnerabilities by
simulating external attacks. It interacts with the application like a real user to detect
issues such as injection flaws, authentication problems, and configuration errors
without needing access to the source code. Al-enhanced DAST tools generate test
cases based on application behavior rather than using fixed patterns. They attempt to
automatically validate their findings to tackle the false-positive problem.

Infrastructure-as-Code scanning
This type of scan analyzes IaC files to identify security vulnerabilities, misconfi-
gurations, and compliance issues before deployment.

These types of scanners are integrated early in software development pipelines, in line
with the shift-left approach. Secret scanning is a recommended security practice that
automatically identifies and alerts users to sensitive information in code repositories
and other data sources.

This prevents sensitive information from being incorporated into a codebase to begin
with. SCA tools are also typically integrated early in the pipeline, after code is committed
and before building. SAST scans can be part of a build phase. Container scanning is
typically integrated after container images are built and before deployment.

By incorporating SCA, SAST, container scanning, secret scanning, DAST, and IaC
scanning throughout your development pipelines, you can effectively implement
shift-left security and proactively protect your applications from vulnerabilities.

Every issue that your test tools identify must be triaged. There is cost in reviewing the
issue, determining if it is real or not, and then remediating it. False positives, issues
that are reported but are not real, are a significant problem. They waste the time of
the reviewer, draining resources from other security efforts and innovation. Further,
by “crying wolf” they diminish the trust engineers place in security findings, and can
slow response times to other, real problems. With this in mind, it'’s no surprise that
reducing the number of false positives is a key priority for Al in many scanning tools.

The triage problem is exacerbated by the number of scanners involved, which may
find the same issues in different ways. In some organizations, there may even be
multiple SAST tools used on the same codebase. In these environments, security test
orchestration layers may be used to de-duplicate and normalize the findings into a
single, manageable list. In an Al-native environment, AI/ML has a role to play here in
pattern-matching as well as reducing developer toil.
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Issues will be detected across all these types of scanners and need to be remediated.
Security tools are increasingly offering automated or semi-automated remediation
through specialized Al coding assistants to streamline this process for developers.

Securing the Software Supply Chain

In this section we'll examine common security risks inherent to today’s software
supply chains. We'll look at risks associated with code repositories, CI/CD pipelines,
artifact repositories, open source dependencies, and the infrastructure underpinning
your software development process. Al is transforming how organizations detect and
respond to these risks by identifying patterns and anomalies across complex supply
chains that would be impossible to monitor manually at scale. We'll look at various
frameworks and benchmarks you can use to assess the security of your toolchain. By
the end of this section, you'll have a better understanding of the potential threats and
how to mitigate them.

The complexity of modern software supply chains creates an ideal use case for artifi-
cial intelligence. Al systems can continuously monitor for suspicious patterns across
repositories, build systems, and deployments. For example, ML models can detect
unusual commit patterns that might indicate a compromised developer account,
identify suspicious package behavior that signals a potential supply chain attack,
or spot configuration drifts that could create security vulnerabilities. These Al
capabilities provide unprecedented visibility and protection across interconnected
components.

Identifying Top CI/CD Security Risks

The Open Worldwide Application Security Project (OWASP), a leading organization
focused on improving software security, has identified the top 10 CI/CD security
risks. As the following list illustrates, the range of threats are diverse. Understanding
these risks and implementing the recommended mitigation strategies will help you
secure and strengthen your CI/CD ecosystem:

Insufficient flow control mechanisms
Insufficient flow control mechanisms in CI/CD pipelines can be exploited by
attackers who can gain access to your pipeline. By bypassing necessary reviews
and approvals, malicious code or artifacts can be pushed through the pipeline,
potentially reaching production environments with severe consequences.

Inadequate identity and access management
The complexity of managing numerous identities across various systems, com-
bined with the tendency for overly permissive accounts, can lead to compromise.
If any user account is compromised, attackers could gain extensive access, poten-
tially reaching the production environment.
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Dependency chain abuse

Dependency chain abuse refers to the exploitation of vulnerabilities in how your
development and build systems fetch code dependencies. This can happen when
these systems are tricked into fetching and executing malicious packages instead
of legitimate ones. Attackers exploit it by publishing malicious packages with the
same name as internal packages (dependency confusion), hijacking maintainer
accounts (dependency hijacking), or relying on typos (typosquatting) to trick
developers into downloading their packages.

Poisoned pipeline execution

This is a cyberattack where malicious code is injected into a CI/CD pipeline,
often through compromised source control systems. The poisoned code can then
be executed within the pipeline, potentially granting attackers the same access
and privileges as the build job. The attacker can manipulate build configuration
files or other files the pipeline relies on, leading to actions such as credential
theft, data exfiltration, or deployment of malicious artifacts.

Insufficient pipeline-based access controls

The risk arises when pipeline execution nodes have excessive access to resources
and systems. This can be exploited by attackers to run malicious code within a
pipeline, abusing the permissions granted to the pipeline to move laterally within
or outside the CI/CD system.

Insufficient credential hygiene

Insufficient credential hygiene is a significant risk in environments where cre-
dentials are widely used across different systems and contexts. Examples include
accidental code pushes containing credentials, insecure usage in build and
deployment processes, unrotated credentials, and credentials being printed to
console outputs or stored within container images.

Insecure system configuration

Insecure system configuration is a common vulnerability due to the numerous
systems and vendors in a typical toolchain. Misconfigurations, such as outdated
software, overly permissive access controls, or insecure default settings, can easily
be exploited by attackers to gain unauthorized access, manipulate CI/CD flows,
or even compromise production environments.

Ungoverned usage of third-party services

Third-party services in CI/CD pipelines, while convenient and valuable for develop-
ment, can easily be granted excessive access to sensitive resources, effectively expand-
ing the attack surface of an organization. This lack of governance and visibility makes
it difficult to maintain proper access controls, leaving organizations vulnerable to
attacks if any of these third-party services are compromised.
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Improper artifact integrity validation
Due to the multiple stages and sources involved in software delivery, malicious
actors can potentially tamper with artifacts without raising alarms. If not detec-
ted, these compromised artifacts can flow through the pipeline and eventually be
deployed into production, executing malicious code and compromising systems.

Insufficient logging and visibility
Without robust logging, you're essentially blind to malicious activities happening
within your development pipeline, making it difficult to detect and respond to
attacks in a timely manner.

Understanding these risks and implementing the recommended mitigation strategies
is key to building a secure and resilient CI/CD ecosystem.

Identifying Top 0SS Risks

OSS dependency usage is ubiquitous, and so organizations must contend with the
security and compliance risks that it brings. We previously mentioned two examples.
In the first, the Log4j threat, thousands of systems were impacted. The second, the XZ
Utils example, while caught early, illustrated how a malicious actor could wreak havoc
by compromising an OSS component.

Common vulnerabilities and exposures (CVEs) are one mechanism that organiza-
tions can use to identify known security problems in order to take steps to mitigate
them. CVE monitoring tools automate the process of scanning your software and
alerting you to the potential risks. While diligent monitoring can help you eliminate
known threats from the OSS you use, it does not guarantee that your OSS compo-
nents are truly safe. Unmaintained components or outdated dependencies also create
risks, and because OSS packages bring in dozens of dependencies, these can be very
complex to manage.

While CVE management can help fight known threats, there are other classes of
threats to contend with. The OWASP Foundation has created the following top 10
list to capture a fuller spectrum of OSS risks that your organization needs to guard
against:

Known vulnerabilities
An open source component can contain security flaws that are publicly disclosed,
often through CVEs or other channels. These vulnerabilities, if exploitable
in your software, can compromise your system’s confidentiality, integrity, or
availability.
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Compromise of legitimate package
Attackers may inject malicious code into existing projects or distribution infra-
structure by hijacking accounts or exploiting vulnerabilities. This can lead to
code execution on end user or organizational systems, putting confidentiality,
integrity, and availability at risk.

Name confusion attacks
Name confusion attacks involve malicious actors creating components with
names that closely resemble legitimate ones, aiming to trick users into installing
them. These attacks can lead to the execution of harmful code on both user and
organizational systems, compromising confidentiality, integrity, and availability.

Unmaintained software
Because unmaintained OSS components are no longer actively developed or sup-
ported, patches for new vulnerabilities might not be available. This situation can
result in increased effort and longer resolution times for downstream developers
who need to create their own patches.

Outdated software
Using outdated software components in your projects can create significant
challenges. It can make emergency updates difficult, especially if vulnerabilities
are discovered in the version youre using. Older releases also may not be as
thoroughly tested for security issues as newer versions.

Untracked dependencies
Untracked dependencies can introduce vulnerabilities without the developers’
knowledge. These dependencies may be missed due to incomplete SBOMs, limi-
ted SCA tool capabilities, or manual installation methods.

License risk
Open source components may have licenses that are incompatible with the
intended use, violate legal requirements, or lack a license altogether. Using com-
ponents without a license or failing to comply with license terms can lead to legal
repercussions.

Immature software
Immature open source projects, lacking best practices like standard versioning,
testing, or documentation, can introduce operational risks to your software. This
lack of maturity may lead to unexpected behavior and increased development
effort along with vulnerabilities.

Unapproved change
Unapproved changes to software components can lead to compromised integrity
and reproducibility of software builds.
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Under-/oversized dependency
Open source components can vary significantly in size and functionality, leading
to security risks. Small components offer minimal functionality but can still
introduce significant risk due to their reliance on upstream projects. Large com-
ponents, while potentially offering more features, may have a larger attack surface
due to unused capabilities and dependencies.

In the next section we’ll look at a framework—SLSA—that can help address these risks.

Ensuring Integrity with Supply Chain Levels
for Software Artifacts

Clearly, the risks of OSS are numerous. Before we leverage OSS or any third-party
components in our own software, we must ask: Who wrote this software? Was it built
and released with tools and on platforms that we can trust? What dependencies does
it bring in? Does it conform to the regulatory requirements that are important to us?

Supply Chain Levels for Software Artifacts (SLSA, pronounced “salsa”) is a frame-
work that provides a structured approach to answering these questions. SLSA is
designed to bolster the integrity of software artifacts throughout the software supply
chain. It enhances the security of software supply chains and can help address the
OSS threats we've looked at.

Similar to the chain of custody for physical evidence, SLSA emphasizes the impor-
tance of tracking and verifying the integrity of software artifacts throughout their
lifecycle. In this section, we'll dig into SLSA and provide guidance on how to comply
with its requirements to safeguard your software from potential threats.

SLSA Overview

SLSA is an open source project driven by the Open Source Security Foundation. With
its focus on practical implementation and measurable security improvements, SLSA
has gained significant traction.

SLSA offers benefits to providers and consumers of OSS and vendor-provided soft-
ware. Within your organization you can use SLSA to help secure your software
development process from internal tampering. This ensures that the code that you
deploy to production is the code you’ve built, tested, and signed off on.

For consumers of software, SLSA provides mechanisms to verify the authenticity
and integrity of OSS. Package registries are able to use SLSA to guarantee that an
uploaded OSS package is built from a source in a legitimate repository. As an OSS
consumer, sourcing from trusted registries ensures the packages you download are
valid. In addition, you can require that your vendors adhere to SLSA principles.
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Verifying vendor SLSA certifications from reputable third-party auditors can provide
an extra layer of confidence.

SLSA defines a tiered framework, allowing organizations to progressively enhance
their software supply chain security. Levels represent increasing degrees of assurance
and protection against tampering. An organization with no protections in place is
considered at Level 0.

SLSA Level 1 is the foundation. Level 1 requires that basic provenance information be
produced. This information should detail the build processes, describe dependencies,
and give the source code location. Level 1 is the starting point for organizations
embarking on their software supply chain security journey. Consumers can use this
information to make decisions about the risks associated with the software.

Level 2 builds upon Level 1 by introducing stronger build requirements. Your build
environment must be isolated and controlled. This level also mandates artifact sign-
ing for integrity verification, preventing tampering.

Finally, Level 3 requires source code provenance and build reproducibility. Prove-
nance must be auditable and its integrity must be ensured.

Table 5-1 summarizes requirements at each of the three levels SLSA 1.0 defines.

Table 5-1. SLSA levels

Implementer  Requirement Degree L L2 13
Producer Choose an appropriate build platform v v v
Follow a consistent build process v v v
Distribute provenance v v v
Build platform  Provence generation exists Exists v v v
Provence generation is ensured to be authentic  Authentic v v
Provence generation is unforgeable Unforgeable v
Isolation strength Hosted v v
Isolation strength Isolated v

Using SLSA to Ensure Integrity
The following principles have guided the design decisions of the SLSA framework:

Trust a small number of platforms; focus on artifacts
Extend trust to a few core platforms, such as build and packaging tools, and then
automate the verification of artifacts produced by those platforms. For example,
your trusted build platform produces and signs provenance attestations for each
artifact it's used to build. Downstream platforms then verify the provenance
signed by the public key to automatically determine that an artifact meets the
SLSA level.
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Trace software back to source code, not individuals
Establish a direct and verifiable link between the final software artifact and its
original source code. This approach is in contrast with trusting individuals with
write access to package registries and trusting the immutable and analyzable
nature of code itself. By establishing a direct link, organizations can significantly
reduce the risk of malicious code injection or unauthorized modifications.

Prefer attestations over inferences
Rely on direct evidence of an artifact’s origin over inferring the trustworthiness of
the artifact based on knowledge of intermediary build systems or other systems.
Instead of inferring the integrity, SLSA mandates explicit attestations about an
artifact’s provenance. This requires concrete proof of an artifact’s build process.

In SLSA 1.0, the build platform is central to ensuring artifact integrity. Build platform
is used to refer to the systems responsible for compiling, packaging, and preparing
your software for distribution. A robust build platform is essential for achieving
higher SLSA levels. The system you select should support isolated builds, meaning for
each build, new infrastructure is created, and after the build runs, the infrastructure is
deleted. In addition, the system should enforce nonprivileged, containerized contin-
uous integration steps that do not use volume mounts. This prevents access to the
provenance key information in compliance with SLSA specifications. With a fortified
build system, you are assured that malicious actors can’t tamper with your build.

In addition to choosing a build platform that can guarantee artifact integrity, your
system should produce and distribute attestations (digitally signed records) that
demonstrate that your software meets your desired SLSA build level. SLSA prove-
nance attestations are cryptographic signatures that provide verifiable evidence about
the origin and build process of a software artifact. They act as a digital passport,
ensuring the integrity and authenticity of the artifact.

Consider a container image built using a CI/CD pipeline. An SLSA provenance
attestation for this image might include the following information:

Builder
The CI/CD platform used to build the image (e.g., GitHub Actions, GitLab
CI/CD)

Invocation
The specific build configuration or script used to create the image

Materials
The source code repositories, dependencies, and other inputs used in the build
process
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Subject
The artifact itself, identified by its unique digest (hash)

Signature
A cryptographic signature generated by a trusted entity, verifying the authenticity
and integrity of the attestation

To validate SLSA provenance attestations, organizations can use tools like the SLSA
Verifier Service. This service verifies the authenticity of the attestation, checks the
signature against the public key of the trusted signer, and ensures the attestation
adheres to the SLSA specification.

To achieve maximum security, SLSA recommends that build platforms, rather than
individual developers, generate provenance. If your organization doesn’t use a build
platform, consider adopting one with SLSA support. For third-party platforms, check
their compatibility and request SLSA support if needed. If you maintain your own
build platform, add SLSA provenance generation capabilities.

Similarly, package ecosystems should distribute SLSA provenance alongside software
packages, embedding attestations within packages or providing them as separate
metadata files. If your organization uses a third-party ecosystem, inquire about SLSA
support and follow their guidelines. For direct distribution, include SLSA provenance
within your package artifacts.

By leveraging SLSA provenance attestations, your organization can gain confidence
in the authenticity and integrity of software artifacts and reduce the risk of supply
chain attacks.

Enhancing supply chain security beyond SLSA

While SLSA provides an excellent framework for build integrity, it primarily focuses
on artifact provenance and build system integrity. To address the full spectrum of
supply chain risks identified in the OWASP Top Ten CI/CD risks, organizations need
additional security measures.

A comprehensive supply chain security strategy should include:

Continuous behavioral monitoring
Modern delivery and security platforms, powered by Al and ML, are improving
to detect anomalous activities across repositories, build systems, and deployment
pipelines. These systems establish baselines of normal behavior and flag devia-
tions that might indicate compromise. Monitoring and security tools such as
Datadog CI and GitGuardian are popular choices today.
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Advanced dependency analysis
Beyond basic vulnerability scanning, intelligent analysis tools can evaluate pack-
age behavior, code patterns, and maintainer activity trends to identify potentially
malicious dependencies before theyre publicly reported. Al-powered systems
can detect subtle indicators of compromise by analyzing code semantics and
behavior in ways that traditional scanners cannot, helping to protect against
sophisticated supply chain attacks like dependency confusion or typosquatting.

Automated policy enforcement

Implement automated policy guardrails throughout your pipelines that enforce
security requirements beyond build integrity. These systems prevent overly per-
missive access, block dangerous configurations, and ensure proper secrets man-
agement—addressing risks like insufficient RBAC and credential hygiene that
SLSA doesn't fully cover. Today, implementing policy widely across a delivery
platform is still unevenly done. Looking forward, it is a strong approach and one
that will benefit from AI both in becoming more adaptable to changing threats
and in rapid creation of policy through AI code generation assistance in PaC
scenarios.

Supply chain risk prediction

Predictive analytics and Al models analyze historical vulnerability trends and
emerging threat intelligence to highlight components in your supply chain that
pose higher potential risk, helping teams proactively address vulnerabilities
before they become critical issues. By analyzing patterns across thousands of
projects and dependencies, these systems identify risk factors in your environ-
ment before they lead to security incidents, enabling proactive hardening of
vulnerable areas.

By combining these Al-enhanced capabilities with SLSA’s build integrity focus, organiza-
tions can create a defense-in-depth approach that addresses the full range of supply chain
risks. This comprehensive strategy protects not just the build process but also the entire
software delivery pipeline, from development through deployment.

Addressing Al-generated dependency risks

As organizations increasingly adopt AI coding assistants, a new supply chain risk
has emerged: AT hallucination squatting. This occurs when attackers register package
names that AI tools incorrectly suggest through hallucinations, creating a vector for
malicious code injection.

While the core SLSA framework provides significant protection against traditional
supply chain attacks, organizations using AI coding tools should implement addi-
tional safeguards:
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Verified registry policies
Configure package managers to only pull from officially vetted registries and
private repositories with known-good packages. This prevents developers from
inadvertently installing packages from untrusted sources, even if an Al assistant
suggests them.

Package age and popularity checks
Implement tooling that automatically verifies recommended packages against
minimum download counts and established history metrics. New packages with
minimal usage should trigger additional review.

Al confidence verification
When using AI coding assistants that provide confidence scores for their recom-
mendations, implement processes to flag low-confidence package suggestions for
manual verification against authoritative sources.

Preinstallation validation
Add automated checks to your development environment that validate package
existence and provenance in trusted repositories before allowing dependencies to
be added to project files.

These additional controls, when combined with SLSA practices and comprehensive
SBOMs, create a defense-in-depth approach that protects against both traditional
supply chain attacks and emerging Al-facilitated threats. By addressing the specific
risks that AI introduces to the dependency selection process, organizations can safely
leverage Al coding assistants while maintaining supply chain integrity. With the
exception of Al confidence verification, each of these practices is helpful against
other package-based attacks, such as typosquatting.

Addressing Zero-Day Vulnerabilities
with Software Bill of Materials

In the first section, we looked at the Log4j exploit that allowed attackers to execute
arbitrary code remotely by exploiting a specific pattern in log messages, leading to
widespread data breaches, ransomware attacks, and disruptions to critical services.
This was an example of a zero-day exploit, one of the most insidious types of threats
because it exploits vulnerabilities that are unknown to the software vendor, giving
attackers a significant advantage before any defenses can be put in place. In this
section, we'll look at how an SBOM serves as an essential tool in the battle against
this type of vulnerability. An SBOM provides a detailed inventory of all components
and dependencies used in a software artifact. We'll look at the composition and
characteristics of SBOMs, and how they are managed throughout the SDLC.
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While dependency management tools and package managers have existed for years
to track and manage software components, SBOM has witnessed significant advance-
ments since 2018. Collaborative efforts, including the National Telecommunications
and Information Administration (NTIA) Multistakeholder Process, have developed
best practices and recommendations for SBOMs. This collaborative effort brought
together industry experts, government agencies, and academics to define standards
and guidelines for SBOM generation, sharing, and consumption.

As a result, SBOM has emerged as a key building block. In fact, recent Linux Founda-
tion research found that 78% of organizations were producing or consuming SBOMs
in 2022, up 66% from the prior year.

You have two standards to choose from when creating SBOMs for your software:

CycloneDX
The CycloneDX project emerged as a leading standard for SBOMs, providing a
machine-readable format for representing software components, dependencies,
and their relationships. CycloneDX has gained widespread adoption and support
from various organizations.

SPDX
Software Package Data Exchange (SPDX) is another popular standard for
SBOM:s, sponsored by the Linux Foundation and codified in the ISO/IEC 5962
international standard. It offers a flexible and extensible format for representing
software components. SPDX has been widely used in the open source community
for many years.

SPDX is a more established format with a broader scope, encompassing not only
component information but also metadata about the SBOM itself, such as its creator
and creation date. It’s particularly well-suited for managing OSS licenses and sharing
information about packages.

CycloneDX is a newer format that offers a more structured and machine-readable
approach, with a focus on providing detailed information about software components
and their relationships. CycloneDX is often preferred for its flexibility and adaptabil-
ity, making it suitable for a wide range of use cases. Your specific use case may
determine which standard you adopt; the tools and processes you select for software
supply chain security management should be able to support both standards.

Regardless of the specific format you choose, the factors you use to assess the quality
of the SBOM are the same. The NTIA has developed a set of minimum elements that
SBOMs should contain to provide essential information about software components
and their dependencies. Ensuring the presence of these elements will facilitate effec-
tive analysis of SBOMs across various tools and platforms, as well as adherence to the
underlying SPDX or CycloneDX specification.
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By providing a comprehensive inventory of components, SBOMs offer transparency
and traceability that can help ensure compliance with your organization’s security
policies and legal requirements. PaC frameworks can leverage SBOMs to automate
this compliance. With PaC you define security policies using code, which can be
managed and version-controlled like code. These policies can then be applied to
SBOMs, ensuring that software components adhere to the organizations security
standards for OSS. Automated compliance reduces the risk of human error and
improves efficiency.

For example, your organization might define a policy that only allows OSS compo-
nents with permissive licenses (e.g., MIT, Apache License 2.0) to be used to ensure
compatibility with the organization’s existing software portfolio and avoid potential
legal issues.

You might define a policy to automatically reject OSS components with known
vulnerabilities above a certain severity threshold. Or you could establish criteria
for evaluating the reputation and trustworthiness of OSS vendors. This can include
factors like vendor size, security practices, and community involvement.

Combining SBOMs with PaC creates a powerful framework for governing OSS usage,
ensuring compliance, and mitigating security risks. Automating enforcement of secu-
rity policies reduces the burden on security teams and improves overall efficiency.

Using SBOMs to Remediate Dependency Issues

In complex codebases with countless dependencies, pinpointing and fixing affected
artifacts can be a daunting task. Adhering to the following best practices can help
your organization be ready to react quickly to zero-day exploits and other threats:

Keep SBOMs up-to-date
Ensure that SBOMs are generated automatically as part of your CI/CD processes.
This ensures that you always have up-to-date information about your software’s
dependencies for every artifact your organization supports.

Utilize automated vulnerability scanning tools
Employ automated tools to scan your SBOMs against vulnerability databases. These
tools can identify known vulnerabilities in your dependencies in a timely way,
allowing you to prioritize remediation efforts and address potential security threats.

Establish a robust patch management process
Develop a well-defined process for patching vulnerabilities identified in your
SBOM:s. This includes setting priorities for patching, coordinating with vendors,
and testing patches before deployment. By maintaining an up-to-date and secure
software supply chain, you can significantly reduce the risk of zero-day exploits
being used.
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Al significantly enhances these best practices. Intelligent SBOM analysis systems can:

Predict vulnerability impact
Al models can analyze your application architecture to determine if a vulnerable
component is in an exploitable position, distinguishing between theoretical vul-
nerabilities and those that pose immediate risk. This contextual analysis helps
teams focus on the most critical issues first.

Automate dependency updates
When vulnerabilities are identified, Al systems can automatically generate pull
requests with appropriate dependency updates, test compatibility with your code-
base, and manage the update process across multiple repositories. This automa-
tion dramatically reduces the time from vulnerability disclosure to remediation.

Identify hidden dependencies
ML algorithms can detect undocumented or transitive dependencies that might
not be explicitly captured in package manifests, providing a more complete view
of your actual attack surface.

Adopting DevSecOps Principles

We've seen in this chapter how vulnerable the software supply chain is. Consistently
delivering software in a secure manner requires more than careful vetting of the
tools and third-party components that you use. It requires more than choosing
CI/CD tools and technologies that support SLSA and the generation of SBOMs and
attestations. To ensure consistent secure delivery, your team must maintain a secure
platform, conduct thorough vulnerability testing, prioritize and fix issues promptly,
prevent insecure code releases, comply with regulations, and guarantee the integrity
of your software and all of its components.

This cannot be the work of a single role on your team or a single team within
your organization. It requires a collaborative approach that integrates security into
the entire SDLC. This is what a DevSecOps approach speaks to. Unlike traditional
approaches where security is added on in a few places, DevSecOps promotes contin-
ual collaboration between development, security, and operations teams, ensuring that
security is considered from the beginning.

In this section, we'll explain DevSecOps principles and show how adopting these
principles will help you to more quickly identify and remediate vulnerabilities, reduce
the risk of breaches, and improve the overall security of your software.
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Establish a Collaborative Culture and Break Down Functional Silos

The first and most vital step to successfully implementing DevSecOps is to establish
a collaborative culture with a security-first mindset. Naturally, this can be the most
difficult step and requires the full support of your organizations leadership team.
Security must be an organizational priority and become a responsibility shared by
developers, operations, security teams, and others.

A simple way to break down silos and establish a shared sense of ownership is to
create cross-functional DevSecOps teams. Siloed teams can limit communication and
knowledge sharing, which can lead to duplicated efforts and inconsistent processes.
In contrast, cross-functional DevSecOps teams foster collaboration and open com-
munication. By including the perspective of development, operations, and security
roles when, for example, establishing a new security practice or selecting a new
security-related tool, you can more easily get the buy-in and alignment needed to be
successful.

In addition, cross-functional teams can help prevent selections or recommendations
that create bottlenecks and strain productivity. An example of this would be a unilat-
eral mandate to impose some new application security checks without considering
their impact on the development process. The impact of this would be increased
workload for developers, which strains not only productivity but also the trust and
goodwill within your organization.

In addition to creating cross-functional teams, you should identify and support a few
key security champions across your organization to help promote security initiatives
and raise awareness among their peers. Use your cross-functional teams and security
champions to share ideas and communicate your progress by establishing open
and transparent communication channels to facilitate the exchange of information
and ideas. This can include regular meetings, team chats, and knowledge-sharing
sessions.

AT tools serve as collaborative bridges between security and development teams
by providing shared context and translating between security and development con-
cerns. For example, when an Al-powered security tool identifies a vulnerability, it can
explain the issue in developer-friendly terms while also providing the security context
that security teams need. This shared understanding reduces friction between teams
and helps establish a security culture where everyone speaks the same language.

Lastly, invest in security training. Identify skills gaps and provide ongoing security
training to all team members, equipping them with the knowledge and skills to
identify and mitigate security risks. This not only raises the bar of the entire team, but
also demonstrates your organizational commitment to security as a priority.
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Adopt and Enforce Secure Coding Methodologies and Shift-Left

Secure coding practices are essential for preventing vulnerabilities. The OWASP
Top 10 and Common Weakness Enumeration (CWE) provide helpful guidance for
identifying and addressing common security vulnerabilities. In addition, ensure your
methodologies address the following common threats:

Input validation
Always validate user input to prevent malicious data from being injected into your
application. This can help prevent SQL injection, XSS, and other injection attacks.

Output encoding
Properly encode output to prevent XSS attacks. This ensures that user-generated
content is displayed safely on the page without allowing malicious code to be
executed.

Error handling
Implement robust error handling to prevent information leakage and potential
vulnerabilities. Avoid displaying sensitive error messages that could provide
attackers with valuable information.

Session management
Use secure session management techniques to protect user data and prevent
unauthorized access. This includes using strong session identifiers and imple-
menting timeouts.

Authentication and authorization
Implement strong authentication mechanisms and enforce proper authorization
controls to restrict access to sensitive resources.

Cryptography
Use secure cryptographic algorithms and practices to protect sensitive data.
Avoid weak encryption methods and ensure proper key management.

Dependency management
Keep dependencies up-to-date and manage them securely to avoid vulnerabili-
ties. Use tools like dependency scanners to identify and address known vulnera-
bilities in third-party libraries.

While staying informed about the latest threats and secure coding can prevent many
vulnerabilities, your organization’s best efforts won’t be infallible. Static and dynamic
analysis tools, along with early-stage security testing, act as a backstop, catching issues
that might be overlooked in code reviews. This is where shift-left comes in. We've
covered how shift-left enables you to identify and address vulnerability at an early stage.
Early remediation reduces the risk of vulnerabilities getting released into production
code.
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Summary

Security cannot be an afterthought in modern software development. It must be
an integral part of the entire development process. As we've seen throughout this
chapter, an Al-native approach to security transforms:

o How vulnerabilities are discovered, using intelligent analysis rather than just
static rules

« How findings are prioritized, based on actual risk rather than generic severity
ratings
» How remediations are implemented, with automated guidance and code generation

o How supply chains are secured, through continuous monitoring and anomaly
detection

o How teams collaborate, with shared context and understanding across security
and development

By embedding security into every phase, from design to deployment, and by fostering
a culture of shared responsibility augmented by Al, organizations can build and
deliver applications that are fortified against modern threats.

In Chapter 6, we'll turn our attention to making our apps more resilient by using
chaos testing to uncover weaknesses that might otherwise go undetected.
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CHAPTER 6
Chaos Engineering and Service Reliability

Complex modern systems are inherently vulnerable. Even seemingly minor disruptions,
or a single weak link, can cause issues that spiral to have catastrophic consequences.

Consider this scenario: a prominent e-commerce platform suffers a significant out-
age during a peak sales event, comparable to Black Friday. As traffic builds, the
platforms checkout service grinds to a crawl, eventually culminating in complete
failure. Thousands of customers are left unable to finalize purchases, resulting in not
only immediate lost revenue but also damaged reputation and eroded trust and brand
loyalty. Postincident analysis reveals the root cause to be network latency between
the checkout service and a critical pricing data cache. As the cache response slowed
under the strain of high traffic, the system’s retry mechanism became overwhelmed,
leading to a cascade of failed requests that ultimately overloaded the database.

Scenarios like these and the rising cost of failures have led to the emergence of service
reliability as a discipline and the practice of chaos engineering (sometimes called
failure or fault injection testing). The goal of chaos engineering is to provide an
understanding of how systems behave when stressed in an unusual (chaotic) way. The
increased popularity of these practices has been fueled by the development of new
tools, technologies, and practices.

The term chaos engineering can be traced back to Netflix in 2010. The company was
transitioning its infrastructure to the cloud, which introduced new complexity, with
hundreds of microservices interacting in unpredictable ways. To test the resilience
of their systems, Netflix engineers developed Chaos Monkey, a tool designed to
randomly terminate VM instances in their production environment. This simulated
real-world failures, forcing engineers to build systems that could gracefully handle
unexpected disruptions.

93



The use of the word chaos and the image of a monkey set loose to randomly terminate
software in a production environment does conjure mayhem. Given these preconcep-
tions, introducing chaos engineering into an organization may be met with resistance.
More than one boss has wondered, “Don’t we have enough chaos around here?”

In this chapter, we'll counter those notions by understanding modern chaos engineer-
ing as a rigorous approach to implementing experiments. As a methodology, we
use this controlled disruption to test the resilience of our systems. In addition to
testing our current state, chaos engineering gives us a powerful methodology to
systematically improve resilience.

The experiments we conduct give us a deeper understanding of our software’s behav-
ior under stress. This knowledge enables us to design targeted improvements. We
then test to validate their effectiveness in meeting our targets.

Service Reliability and Service Resiliency

Service reliability and service resiliency are related concepts. The former is the proba-
bility that a service will perform its intended function without failure for a specified
period under defined conditions. The latter is the ability of a service to withstand and
recover from disruptions, such as hardware failures, software bugs, network outages,
or even cyberattacks. It's about how well a service can bounce back from adversity.

While distinct, they are interconnected. A highly reliable service is less likely to
experience failures, but even the most reliable systems can encounter unexpected
problems. That’s where resiliency comes in. It ensures that even when failures occur,
the service can recover quickly and minimize disruptions to users.

We'll also cover how to use service-level objectives (SLOs) to set our resiliency
targets. We'll look at using error budgets to allow for an acceptable level of failure
within that target. We'll see how chaos engineering works with these mechanisms by
helping us validate whether our system can operate within its error budget and still
meet our targets even when facing unexpected disruptions.

In this chapter we’ll also move beyond static chaos experiments to understand a more
modern and dynamic approach that involves integrating chaos engineering into our
CI/CD pipelines, allowing us to continuously assess and improve system resilience as
part of our regular development workflows.

Throughout this chapter, we will explore how advanced chaos engineering tools
leverage AI/ML-driven insights to recommend and guide the execution of these
experiments, leading to more efficient and effective resilience testing while reducing
risk. We will also see how agentic AI, GenAl, and MCP address critical scalability and
precision challenges in chaos engineering by automating experiment design, enabling
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dynamic risk detection, and providing intelligent remediation. These technologies
transform chaos engineering from a reactive practice into a proactive, self-optimizing
system resilience strategy.

Getting Started with Chaos Engineering

While many chaos engineering experiments employ randomness (e.g., selecting a
random server or service to take down), the practice of chaos engineering is as
methodical as lab science. In this section, we'll dive into the core tenets of chaos engi-
neering and look at best practices to reduce the risk of causing service disruptions
when conducting experiments.

Principles of Chaos Engineering

Netflix has defined a set of core principles that provide a useful framework for
exploring how your systems behave under stress. A structured approach ensures that
your chaos experiments are not just disruptive events but structured investigations
that generate valuable data that you can use to drive improvements to your system’s
resilience. These principles are:

Defining a “steady state” that characterizes normal system behavior
Observability is key here. You must have the metrics you need to understand
the normal range of values that indicate your system is healthy and perform-
ing as expected. This could include request latency, error rates, throughput, or
application-specific metrics. Be sure to account for external factors that might
influence your metrics, such as time of day, day of week, or the presence of a
marketing campaign that could spike traffic.

Turning expectation into a hypothesis
Based on your understanding of the system’s architecture and dependencies,
formulate a hypothesis about how it should behave when a specific failure is
introduced. Frame your hypothesis in a way that can be objectively tested using
your chosen metrics. For example, “If we simulate a 20% increase in traffic, the
average response time should remain below three seconds, and the error rate
should not exceed 0.5%.

Executing the experiment by simulating real-world events
Use chaos engineering tools to automate the injection of failures. Simulate a
server crashing or becoming unavailable, an outage of a critical third-party
service, or a sudden surge in user requests.
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Evaluating the results against the hypothesis
Compare the system’s behavior during the experiment to your established base-
line and your hypothesized outcome. Did the metrics stay within acceptable
ranges? Did the system recover as expected? Were any unexpected side effects
observed? If the system deviates from the expected behavior, investigate the root
cause. Based on the experiment’s outcome, refine your hypotheses and adjust
your system design or operational procedures to enhance resilience.

Starting Small and Scaling

Simulating failures to intentionally take down systems does, of course, incur risk. We
knowingly incur risk in this controlled way to validate the hypothesis we've defined.
An important strategy for reducing risk is to start with small experiments.

To illustrate starting small and scaling experiments, let’s walk through an example
focused on testing a checkout service in an e-commerce system. This service is a
critical microservice that processes user purchases. The expected outcome is simple: a
customer adds items to their cart, proceeds to checkout, and completes the payment.
The customer expects a smooth, fast, and reliable experience.

Behind the scenes, this straightforward operation relies on a series of complex pro-
cesses. The checkout service depends on multiple APIs and external services to
function properly, including inventory systems, payment gateways, and caching layers
(like Redis) to quickly retrieve important data such as product prices, discounts,
and availability. The checkout service fetches pricing data from a cache for quick
access. If the cache is slow or fails, the checkout service should still provide the right
information by failing over to another cache instance or even to a database as a
backup, though it may be slower.

GenAl can transform chaos engineering from manual hypothe-
sis testing into an adaptive, self-optimizing resilience validation
system. This approach proves particularly valuable in critical
e-commerce workflows like checkout services, where balancing
risk mitigation with realistic failure simulation is paramount.

Developers typically configure retry logic, timeouts, and circuit breakers to handle
network issues or failures. Let’s look at each:

Retry logic
This ensures that if a request to the cache fails or experiences network issues,
the system will automatically try again a few times before giving up. This helps
handle transient failures. The system might, for example, retry up to three times
with a delay of 100 ms between each retry.
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Timeouts
Timeout settings define how long the service should wait for a response before
deciding that the attempt has failed. This prevents the service from hanging
indefinitely if the cache is slow or unresponsive. A system might be configured to
time out after 200 ms for each request to the cache.

Circuit breakers
A circuit breaker prevents further attempts to call a failing service after a certain
number of failed attempts. If the cache continues to fail or is too slow, the circuit
breaker “trips” and routes traffic to a fallback system (e.g., another cache or a
database). The circuit breaker can automatically reset after a set period to test
if the original service has recovered. For example, a circuit breaker might be
configured to trip after five consecutive retries fail.

We'll start testing the checkout service by introducing small latencies to ensure the
retry logic and timeout settings are functioning before scaling up to introduce more
severe issues that will ultimately trigger the circuit breaker. If all goes well, we expect
the system to fail over to an alternative data source. These are our steps.

Step 1: Conduct a simple latency experiment

We start with a test of our retry logic. We want to ensure the system is resilient if
network issues arise, such as high latency or a temporary loss of connectivity. Our
steady state is a responsive service that responds within an acceptable time limit.

Our hypothesis is that if the network experiences significant latency when trying
to reach the cache, the system should use its retry logic and timeout settings to
handle the issue gracefully, eventually tripping the circuit breaker to prevent further
degradation of service.

We start small by injecting a small amount of network latency (e.g., 200 ms) between
the checkout service and the cache.

We observe whether the retry logic kicks in and whether the service handles the
delay within the acceptable time limit without user impact. We continue to monitor
whether the system continues functioning as expected, pulling from the cache after
the latency delay.

Step 2: Test resilience against a more significant network issue

Once we've tested our retry logic with a small latency, we can increase the scope and
intensity of the experiment to simulate a more significant network issue. This tests
our timeouts. We increase the network latency (e.g., from 500 ms to 1 second) to see
how the service behaves under heavier load or network congestion. We test how the
retry logic handles the extended delay. Does the service retry the call to the cache,
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and does it respect the timeout setting? If so, we increase the severity of the issue by
causing the cache API to completely fail after a set number of retries.

Step 3: Validate that the circuit breaker fails over to an alternative

We next set experiment conditions to render the cache inaccessible. After retrying,
the circuit breaker mechanism should be triggered. When the circuit breaker is
tripped, the checkout service fails over to an alternative data source, such as another
cache instance in a different data center (in this case, our Postgres database). While
the Postgres database might be slower than the cache, the goal is to keep the service
operational, albeit with slightly degraded performance.

AT agents can make this process even simpler by dynamically adjusting failure injec-
tion parameters using reinforcement learning. For example:

1. Start with 200 ms delays, then autonomously scale to 500 ms to 1 second based
on real-time performance telemetry.

2. Limit experiment impact to 0.5% of transactions initially, expanding only after
validating safety mechanisms.

3. Optimize trip thresholds (e.g., five failures to four) through historical success
pattern analysis.

You can further scale the experiment to test the resilience of the failover by introduc-
ing similar network issues between the checkout service and the Postgres database
to see how the system continues to adapt under increased failure conditions. By
following this process, we gradually increase the complexity of the experiment to
validate the system’s resilience mechanisms, without jumping into major disruptions
immediately.

It's important to note that the initial settings for resilience mechanisms are often
based on educated guesses rather than precise data. This is another reason that testing
through chaos engineering experiments is so crucial.

Injecting network latency is just one condition we can scale in a chaos experiment.
We'll discuss other conditions later in this section.

Starting in Production-Like Environments

Another important best practice to minimize risk in chaos engineering is to test
experiments in pre-production environments before moving to production. This
allows us to experiment safely without impacting real users. We can rapidly iterate,
adjust parameters, and observe results free from production constraints. Once we
confirm system resilience in these settings, we promote our experiment to the
next environment, eventually reaching production. Each promotion carries risk, so
we proceed with caution. Configuration drift between environments can lead to
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discrepancies in experiment results. Maintaining the “start small and scale” approach
when moving between environments is crucial in case we encounter issues. Thor-
oughly vetting our experiments in pre-production ensures that our experiments are
well-designed and insightful without unintended consequences.

Leveraging Modern Tools

We looked extensively at an example of testing network latency in a chaos experi-
ment. There are many other types of conditions that are important to test. Modern
tools (such as Harness Chaos Engineering, Chaos Monkey, and LitmusChaos) can
help here by offering extensive catalogs of predefined experiments. Modern tools will
typically offer chaos engineering experiments across categories and common failure
patterns, including:

Resource exhaustion

CPU exhaustion
Force high CPU utilization to simulate a process consuming excessive pro-
cessing power.

Memory exhaustion
Consume all available memory to test how your application handles memory
pressure and potential out-of-memory errors.

Disk I/0 exhaustion
Generate heavy disk read/write operations to simulate storage bottlenecks.

Network bandwidth exhaustion
Saturate network bandwidth to test how your application performs under
network congestion.

Network disruption

Network latency
Introduce delays in network communication between services or with exter-
nal dependencies.

Packet loss
Simulate the loss of network packets to test how your application handles
unreliable connections.

Network partition
Isolate parts of your network to simulate connectivity issues between services
or availability zone outages.
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DNS failures
Simulate DNS resolution problems to test how your application handles
DNS outages or incorrect responses.

Infrastructure failure

Node failure
Terminate or shut down VMs or containers to simulate hardware failures.

Pod failure (Kubernetes)
Kill or evict pods to test the self-healing capabilities of your Kubernetes
deployments.

Availability zone outage
Simulate the failure of an entire availability zone to test your disaster recov-
ery plan and multiregion deployments.

Inference layer attacks
Simulate GPU memory exhaustion during ML model serving.

Application-level faults

Service failure
Stop or crash specific services within your application to test fault tolerance
and service degradation.

Function failure
Introduce errors or exceptions within specific functions or methods to test
error handling and recovery mechanisms.

Data corruption
Corrupt data in a database or storage system to test your data integrity and
recovery processes.

State management

Time travel
Manipulate the system clock to simulate time shifts, testing how your appli-
cation handles time-sensitive operations or scheduled tasks.

State injection
Inject specific data or states into your application to test its behavior under
unusual conditions. Use GenAl to create plausible corrupt data entries
matching schema constraints.
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Dynamic scenario generation using Al

Architecture modeling
Use Al to analyze service dependencies (e.g., Redis cache — payment
gateway — database) to create failure chains mirroring production
environments.

Generative adversarial networks
Create novel failure modes by pitting AI models against each other to dis-
cover unexplored vulnerability combinations.

The more types of experiments we try, the more we can learn about weaknesses in
our system and how we can strengthen our resiliency.

Newer tools can go beyond offering catalogs to analyze your system architecture
to suggest targeted experiments that expose potential weaknesses specific to your
setup. For example, for software built with a microservices architecture, a chaos
engineering tool might analyze network traffic and dependencies to identify critical
services and suggest experiments that target these specifically. A modern tool might
also recommend injecting latency or errors into API calls between services to test
resilience to communication disruptions.

For applications deployed with Kubernetes, the tool could analyze your Kubernetes
deployments and suggest experiments that target specific pods, deployments, or
namespaces to test replica scaling, resource limits, and health checks. Tools like
Red Hats Krkn use Al to profile Kubernetes pods to prioritize network-intensive
services for partition tests. In the case of multiregion deployments, a modern tool
might analyze your multiregion setup and suggest experiments that simulate regional
failures or network partitions to test your disaster recovery plan and the ability of
your application to failover to another region.

Learning from Others

Paying close attention to industry-wide incidents, particularly those affecting compa-
nies with similar tech stacks, is crucial for proactive risk mitigation. For instance, an
OpenAl outage on December 11, 2024, serves as a stark reminder of how seemingly
minor deployments can have cascading consequences.

In this case, a new telemetry service overwhelmed the company’s Kubernetes control
plane, triggering DNS failures that brought down its API, ChatGPT, and Sora platforms
for hours. The impact was widespread and long-lasting: for several hours, developers
and users couldn’t access the services they rely on. Engineers identified the root cause
within minutes but faced a major hurdle—without access to the Kubernetes control
plane, rolling back or fixing the deployment was extremely challenging.
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Let’s look at a few targeted chaos engineering experiments to see how these cascading
failures might have been prevented.

Experiment 1: Control plane overload simulation

First, we design an experiment to test our Kubernetes API server resilience. In this
experiment, we would intentionally flood the Kubernetes API server with a high
volume of read/write operations to mimic what the new telemetry service did in
production. By running this test on a staging environment with a production-like
scale, we could have spotted the exact threshold where the API server starts to
fail. This early detection would inform better load limiting, improved alerting, and
possibly a safer phased rollout strategy.

Experiment 2: DNS failure testing

This experiment would involve introducing latency or failures in the DNS resolu-
tion process—specifically targeting the components responsible for service discovery.
Running this experiment helps confirm that essential services can continue function-
ing even if DNS is disrupted. We will discover if our caches, fallback mechanisms, or
alternative routing strategies are sufficient. If not, we would know to invest in those
areas before a real outage hits.

Example 3: Break-glass access drills

This last experiment (or drill) involves simulating a situation where engineers are
locked out of the Kubernetes API under heavy load. By practicing emergency access
methods—like having dedicated out-of-band channels or specialized tooling—teams
can quickly revert or disable problematic deployments when the standard control
plane is inaccessible. If this drill had been done beforehand, teams would have known
exactly how to remove the faulty telemetry service within minutes, minimizing
downtime.

Service-Level Objectives and Service Resiliency

We see how chaos engineering helps us uncover weaknesses and build more resilient
systems. But how do we define “resilient”? How do we measure and track whether
our systems are meeting our reliability goals? This is where SLOs and service-level
indicators (SLIs) come in. Together, these provide the framework for defining and
measuring the reliability of our services, giving us a clear target to aim for and a way
to track our progress.

SLOs are the targets we set for the reliability of our services. SLIs are the specific
metrics we use to measure whether were meeting those targets. SLOs are typically
expressed as a percentage of time or number of requests that must meet the defined
SLI criteria. For example, 99.9% of requests should have a latency of under 200
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milliseconds. SLIs are the specific, measurable metrics that reflect the performance of
your service from a user’s perspective. They quantify aspects like availability, latency,
error rate, throughput, and other relevant factors.

In essence, SLIs are what you measure, and SLOs are the targets you set for those
measurements.

Establishing Reliability Targets

When establishing reliability targets, it's essential to align them with the overarching
business needs. Monitoring and observability solutions provide many SLI metrics,
but it is important to prioritize those that accurately reflect how your customers
experience your applications. The goal is not to track every individual service, but to
focus on those services that are critical to the customer experience.

Common SLIs include “the four golden signals™

Request latency
The time taken to process a user request

Throughput

The number of requests processed per second

Error rate
The percentage of failed requests

Saturation
The utilization percentage of the system

Consider carefully how to implement each of these within your system. For instance,
when measuring latency (response time), you can choose to track all transactions or
focus on a subset of the most crucial ones, such as login, payment submission, or
adding items to a shopping cart. Again, select a metric that provides a meaningful
representation of your customers’ experience.

Shared Ownership of System Reliability

In Chapter 1, we introduced DevOps as practices that combine software development
(Dev) and IT operations (Ops) concerns. Nowhere are shared ownership and collabo-
ration more important than in ensuring system reliability. SLOs are a great example
of this shared responsibility. Development, operations, and reliability teams should
work together to define SLOs. The collaboration establishes an understanding of
acceptable system performance and creates a common goal for everyone to work
toward. SLOs then act as a guide for making decisions that balance the need for rapid
development (velocity) with the need for stable and reliable systems.
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With this shared understanding, developers can prioritize features that maintain
reliability, knowing how their work impacts overall system performance. At the
same time, operations teams gain the context they need to effectively support the
application. If an SLO is breached, it triggers activities that encourage engineering
teams to stabilize the service before releasing new features. This helps prevent a cycle
of instability and ensures that reliability remains a top priority.

A collaborative approach to designing, prioritizing, and conducting the chaos engi-
neering experiments themselves brings teams together. All teams benefit from the
insights gained from these experiments and from working together to address when
failures are found.

Modern tools facilitate this collaborative approach to system reliability. Monitoring
platforms, incident management systems, and communication tools give a shared
visibility into system performance and potential issues. Real-time data and automated
alerts empower both Dev and Ops teams to respond quickly to incidents. More
importantly, these tools foster a culture of proactive problem-solving (such as data-
driven prioritization, real-time collaboration triage, etc.), where teams can identify
and address potential issues before they impact users.

Error Budgets and Their Role in Reliability and Innovation

We've learned how chaos engineering helps us proactively find system weaknesses,
and how SLOs and SLIs provide a clear framework for defining our reliability goals
and measuring whether our systems are meeting those targets. Error budgets enter to
provide a safety net.

Error budgets represent the maximum amount of unreliability or downtime that a
service can have while still meeting its SLOs. By tolerating minor hiccups in the pur-
suit of rapid innovation, error budgets acknowledge that perfection is unattainable,
and instead help us achieve an acceptable level of reliability that balances these two
competing priorities.

Let’s look at how this works by returning to our e-commerce example. Imagine we've
set an SLO of 99.9% for website logins taking less than 300 ms. Over a one-week
period, this translates to a maximum allowable SLO violation time of 10.08 minutes.
This is our error budget. How does that impact us? In the event that the error budget
burns down to zero, we will stop or slow down deployments of new software and
focus on stabilizing the system while our error budget replenishes. Not only does the
state of our error budget impact our deployment priorities, but it also factors into
chaos testing priorities.
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Monitoring to Inform Chaos Testing Experiments

Keeping a close eye on your SLIs does more than just alert you to immediate prob-
lems—it reveals potential weaknesses in your system. For example, if you notice
your system constantly pushing against latency limits, draining your error budget,
your system might be struggling to keep up in high-traffic scenarios. This suggests
a good area to focus your chaos experiments on. By simulating those high-traffic,
high-latency situations, you can see how your system holds up under pressure and
make sure it can still meet its SLOs during peak usage.

With modern tools, you can automate this by automatically triggering chaos tests
based on these patterns, so you can continuously test and improve your system’s
resilience without lifting a finger. Modern platforms can correlate SLI trends with
chaos test recommendations using Al thus increasing test coverage significantly.

Strategic Use of Error Budgets for Chaos Testing Experiments

Error budgets are not merely a safety net for occasional failures; they are a tool for
managing risk. Using our e-commerce website example, we think of the 10.08-minute
error budget as a resource to be spent wisely. In this section we’ll look at how to
proactively use this budget to conduct chaos experiments.

Prioritizing chaos experiments in alignment with your available error budget

Effective chaos engineering requires consideration of your available error budget.
When your error budget is healthy, your runway is long. You have more freedom
to conduct aggressive experiments, simulating large-scale failures or pushing critical
system components to their limits. This might involve testing failover mechanisms,
injecting network latency, or even simulating the complete outage of a core service.

As your error budget dwindles, its essential to shift focus toward smaller-scale
experiments that carry less risk of significant disruption. These might involve testing
individual components in isolation, simulating minor network issues, or validating
the resilience of recent changes. Prioritizing experiments in this way ensures that you
can continue to learn and improve without jeopardizing overall system stability.

Modern automation tools can help. By analyzing your error budget in real time,
these tools can recommend appropriate experiments based on your available “room
for failure” This allows you to maintain a balance between proactive testing and
service reliability, ensuring that your chaos engineering efforts are both insightful and
responsible.
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Protect your error budget by utilizing Al-augmented dry runs and simulations

Simulating first is another strategy to minimize the risk of unintended consequences
during chaos experiments. This is especially important when up against a dwin-
dling error budget. The practice of Al-augmented “dry running” chaos experiments
involves simulating experiments in a controlled environment, using system models
or replicas, to assess their potential impact before executing them in production, and
using AI remediation agents to roll back experiments if anomaly detection thresholds
breach predefined limits. By identifying potential issues and refining experiment
parameters beforehand, teams can reduce the likelihood of causing significant dis-
ruptions that could drain your error budget and cause significant disruptions.

Integrating Chaos Engineering and SLOs
into CI/CD Pipelines

Reliability issues are primarily driven by change, changes to our applications, or
changes to your infrastructure. Google DevOps Research and Assessment (DORA)
defines the change failure rate (CFR) metric, which gives us another view of the
challenge. The CFR describes how often our changes, such as new code deployments
or infrastructure updates, introduce problems in production that require hotfixes or
rollbacks. The DORA 2024 State of DevOps report indicates that 80% of surveyed
teams have average CFRs of 20% of their releases. In fact, 25% of teams have CFRs
averaging an alarming 40% of releases.

In addition, we must consider the time and cost to remediate each change failure. The
failed deployment recovery time metric (replacing the similar mean time to recovery
[MTTR] metric) focuses on how quickly an organization can recover from failures.
This gives us a sense of the challenges teams face on this front. While many teams
are able to remediate in less than a day, 25% require a week to a month to replace
defective software.

Throughout earlier chapters, we've looked at strategies to prevent defects from
getting to production. We test at every stage in our delivery pipelines, executing
tests of every type. We take care in managing our environments. We guard against
configuration drift with practices like GitOps, combined with IaC. And we conduct
chaos engineering testing in pre-production and production environments to help us
find weaknesses in our systems. Yet, despite our best efforts, occasional defects that
require fast remediation are inevitable. This is where continuous resilience comes in.

Just as continuous integration and continuous delivery are about using automation
to build, test, and deploy our code, continuous resilience is about automating our
resiliency practices by adding chaos engineering experiments to our CI/CD pipelines.
Doing so means we are not just testing functionality, but actively and constantly
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evaluating how changes stand to impact the stability of our systems. Using Al agents
for DevOps, chaos experiments can be intelligently integrated into CI/CD pipelines.

In “Scaling Your Chaos Engineering Practices” we'll explore how to scale a chaos
engineering practice by incorporating it into our delivery pipeline with the help of
modern tools. We'll look at how to prioritize the experiments to add to your pipeline,
and best practices for securing and governing chaos experiments in your pipeline.

Scaling Your Chaos Engineering Practices

Organizations start their chaos engineering journey in different ways. Often a single
team or two will adopt an open source tool and introduce experiments in a small
pocket of an organization. An organization may host periodic chaos engineering
“game days.” There are all-hands-on-deck, planned events where teams deliberately
inject a series of failures into systems to practice incident response and identify
weaknesses in a controlled environment. These are typically infrequent and responses
are reactive to issues that are discovered.

The trick to implementing continuous resiliency at scale, across an organization,
can be a matter of choosing the right tooling. While both open source and propri-
etary solutions offer valuable capabilities, organizations should carefully evaluate
their requirements. Some enterprise environments may need specific features like
advanced security controls, comprehensive audit trails, and RBAC—features that may
vary in availability and maturity across open source solutions.

This challenge was acutely felt by a leading fintech company processing over a
billion daily payment transactions. Faced with increasing transaction failures during
peak demand, it sought a solution to improve the reliability of its complex platform
supporting 20+ financial products.

The company’s choice of a modern chaos engineering tool was instrumental in
overcoming the obstacles of scaling its chaos engineering practices. The tool it chose
(in this case, Harness Chaos Engineering) included an extensive library of prebuilt
experiments that simplified the work of automating and orchestrating numerous
chaos experiments. In addition, comprehensive analysis and reporting capabilities
gave the company quick insights into the resiliency of its systems.

The company began by focusing on a single critical service that handled nine mil-
lion daily payment requests. It pinpointed fault-tolerant targets within the intricate
infrastructure, laying the groundwork for a controlled rollout of resilience testing.
By prioritizing the automation of chaos experiments within delivery pipelines and
production environments, it addressed the root causes of transaction failures and
built a foundation for continuous resilience.
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Through its automated resilience testing platform, the company was able to expand
the breadth of its testing to uncover vulnerabilities in service recovery, optimize
application design patterns, and fine-tune configurations. The results were signifi-
cant: a 16x reduction in failed transactions, MTTR reduced to 10 minutes, and a 10x
improvement in customer satisfaction. Without modern tooling that offers security,
templates and automation, and orchestration, it would have been impossible to roll
out chaos engineering across the organization and achieve these results in the short
time it took.

Adding Chaos Engineering Experiments
and SLOs to Your CI/CD Pipeline

To solidify your resilience strategy, integrate SLOs as reliability guardrails within your
CI/CD pipeline. Think of SLOs as the brakes on a race car—essential for maintaining
control while pushing for maximum speed. Development teams, much like race car
drivers, strive for rapid deployments, but without robust SLOs in place, they risk
crashing their systems with unchecked changes. By monitoring key metrics, you can
automatically block deployments that breach these thresholds or exhaust their error
budget. This approach can accelerate your development velocity without sacrificing
stability.

When adding chaos engineering experiments to your CI/CD pipeline, keep in mind
two measures to guide your progress: resilience scores and resilience coverage. Resil-
ience scores are simply how well your services perform against the experiments
you apply in QA and production. Resilience coverage, similar to code coverage,
assesses how many more experiments are needed to comprehensively evaluate system
resilience, guiding the creation of a practical number of tests. Together, these metrics
provide a holistic view of resilience, enabling all teams to contribute to and measure
progress toward continuous resilience goals.

Start by adding experiments that test against known resilience conditions, ensuring your
resilience score remains stable with each new deployment. Slowly increase your resilience
coverage by adding experiments to test new conditions. If increasing the resilience cover-
age means that the resilience scores are reduced, determine if the failed chaos experiment
warrants stopping the pipeline or if action can be taken in parallel.

Next, add experiments that address changes to the platform on which the tar-
get deployments run. For example, when upgrading underlying platforms like
Kubernetes, incorporate chaos experiments into your CI/CD pipeline to proactively
identify potential weaknesses and compatibility issues. This helps prevent latent
issues from impacting applications in the future and ensures a smooth transition
during platform updates. By catching these issues early, you can avoid costly incidents
and maintain continuous resilience.
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Add experiments to the pipeline that validate the deployments against previous pro-
duction incidents and alerts as incidents occur. Lastly, add experiments that validate
the deployments against configuration changes to the target infrastructure. This is
another scenario where the resilience tests that passed earlier will start failing because
the target environment changed through a higher or lower configuration.

As you invest in creating and fine-tuning your experiments, treat them like any other
piece of software: version them, test them, and manage their lifecycle in a repository.
This ensures your chaos engineering practice remains effective and adapts to changes
in your systems. Centralized repositories facilitate collaboration and the sharing of
these experiments, promoting consistency and best practices across teams.

Security and Governance for Chaos Engineering

Clearly, chaos engineering is a powerful approach, but careless experimentation has
the potential to cause serious harm to both system resilience and trust in your chaos
engineering program. By integrating it with your security and governance frame-
works, you can define the guardrails you need to ensure experiments are conducted
responsibly.

Just like tech debt, resilience debt can accumulate in your production services. Every
alert, incident, hotfix, or workaround—like simply throwing more resources at a
problem—contributes to this debt. Instead of addressing the root cause, these quick
fixes often mask underlying issues and create a false sense of stability.

Modern chaos engineering tools can help you establish and enforce policies to
combat this. For example, we could set a policy that mandates a corresponding
chaos experiment for every production incident related to component misbehavior,
network issues, API failures, or unexpected load. This experiment, integrated into
your CI/CD pipeline, would need to be validated within a specific timeframe, say,
within 60 days of the incident. Such a policy would not only enforce a discipline of
addressing resilience debt but also encourage developers and QA teams to prioritize
fixing production code over pushing new features that might further exacerbate the
problem.

In addition to using policies to manage resilience debt, you can use security gover-
nance policies to prevent unauthorized experiments, restrict access to critical systems,
and limit testing by environment, time window, personnel, or even fault type. By
automating oversight and integrating these policies into your CI/CD pipelines, you
can increase resilience coverage while reducing risk.
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The Future of Al-Native Chaos Engineering
in Service Reliability

The future of chaos engineering promises even greater sophistication and integra-
tion within service reliability practices. Tools such as Harness Chaos Engineering
and Chaos Monkey will not only automate experiments but also leverage AI/ML
to predict their impact, analyze system behavior under stress, and recommend opti-
mal mitigation strategies. This intelligent automation will minimize risk, allowing
teams to conduct more complex experiments with greater confidence and efficiency.
Advancements in observability and tracing will provide deeper insights into system
dynamics, enabling more precise identification of vulnerabilities and faster recovery
from disruptions.

As systems grow increasingly complex, with distributed architectures and microser-
vices becoming ever-present, chaos engineering will play a crucial role in ensur-
ing their resilience. Even large language model-based multiagentic systems can be
enhanced using chaos engineering. By combining chaos testing with Al-powered
analysis and automated remediation (for example, ChaosEater), we will be able to
address potential failures faster and with greater precision, minimizing downtime
and maintaining high levels of service reliability.

Summary

In this chapter, we explored chaos engineering as a methodical approach to building
and validating system resilience. We learned to design and execute experiments
responsibly, using SLOs and error budgets to balance innovation and stability. By
integrating chaos engineering into CI/CD pipelines and leveraging modern tooling,
organizations can proactively identify weaknesses, learn from failures, and continu-
ously improve resilience. Ultimately, chaos engineering empowers us to create more
robust systems that meet the demands of today’s complex digital world. With these
principles in place, the next step is to apply them seamlessly as part of your deploy-
ment process. Let’s explore how to ensure stability during production rollouts.
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CHAPTER7
Deploying to Production

The Knight Capital incident of August 1, 2012, stands as a stark example of how a
software deployment gone wrong can have catastrophic consequences. On that day,
Knight Capital, then one of the largest trading firms in the US, deployed a large
update to its automated trading system. Due to a confluence of factors, including
limited automation, human error in deployments, and poor feature flag management,
outdated code was accidentally reactivated, causing the system to rapidly place erro-
neous orders in the stock market.

Within just 45 minutes, the faulty algorithm had executed over 4 million trades,
resulting in a staggering loss of $460 million for the firm. This incident not only
nearly bankrupted Knight Capital, leading to its eventual acquisition, but also
caused significant market disruption. It highlighted the critical importance of robust
deployment practices, thorough testing, governance, and fail-safe mechanisms in
high-stakes software environments.

Deploying to production can be a high-stakes activity. While not every application
is a market-making trading platform, applications worth updating have people who
depend on them, and changing anything introduces risk. Although we might prefer
to avoid this risk by deploying less often, we face business demands for more frequent
change. Moreover, certain types of risk increase as we delay and accumulate more and
more changes into our planned release, making the continuous delivery approach
more valuable.

In previous chapters, as we've navigated the software delivery process, we've hit upon
strategies to mitigate the risk of finally deploying to production. In Chapter 2, we
discussed the importance of code reviews. In Chapter 3, we looked at how to use early
scans and unit testing to detect issues quickly. Chapter 4 described additional types
of testing to harden your software and reviewed best practices in deploying to test
environments. By using consistent tooling, pipeline steps, and deployment strategies,
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and by parameterizing for differences in environments, we use our deployments to
test environments to vet our deployments to production. In Chapter 5, we dived deep
into security, reviewing the practices that help secure our production deployments.

Today, artificial intelligence is transforming how organizations approach production
deployments to prevent such disasters. ML systems now analyze deployment pat-
terns, detect anomalies during rollouts, and verify application health with greater
precision than traditional monitoring. Unlike rule-based verification, which relies
on predefined thresholds, Al systems can learn normal behavior patterns unique to
each application and detect subtle deviations that might indicate emerging problems.
These capabilities allow teams to deploy faster while paradoxically reducing risk—the
opposite of the traditional speed-versus-safety trade-off.

In this chapter, in addition to covering the transformative role of Al, we'll look at
best practices for governing production deployments and strategies to safely deploy
to production, and we'll discuss observability to validate the quality of production
deployments. We'll explore how modern Al-powered deployment tooling helps
mitigate risk through intelligent verification rather than just reactive monitoring,
and how Al-powered systems evaluate multiple signals simultaneously to determine
deployment health, catching issues that might slip past human operators.

Governing Production Deployments

The Knight Capital incident is a good reminder: the consequences of deploying
software with defects can be nothing short of catastrophic financial ruin. Your organ-
ization’s trust and credibility are also at risk. For the organization, the cost of fixing
defects post-deployment can skyrocket, far exceeding the expense of addressing them
during development.

To deploy with confidence, we need to understand what code changed and who
made those changes. We need to validate that the code review processes we put
in place were conducted, and understand who conducted those reviews. For any
dependencies that were introduced, we want to understand them and know that they
comply with our policies. We want to know if they were reviewed for any known
defects. We need assurance that the builds, scans, and test processes that we require
were executed against all code changes. And of course, we want to ensure that the
results of the scans and tests, in fact, met our criteria for passing. Lastly, we require
evidence that our development processes themselves remain in compliance with the
frameworks and requirements relevant to our organization.

Stringent code reviews, thorough and robust testing practices, and automated, repeat-
able deployment procedures are essential to avoiding deployment failures. However,
without appropriate governance and controls to ensure that we've adhered to our
processes, all of our efforts can be rendered ineffective.
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Al is beginning to transform deployment governance, though most applications
are still emerging. Current AI systems focus primarily on analyzing deployment
patterns to identify risk factors and policy violations rather than making autonomous
decisions. These systems can process more deployment variables simultaneously than
humans, helping to identify subtle correlations between code changes, deployment
configurations, and historical incidents. Organizations are beginning to use these
insights to refine their governance frameworks, though human oversight remains
essential for final approval decisions.

Deployment governance is simply the systematic oversight and
control of the software deployment process to ensure the rules and
policies we've defined are enforced. Fundamentally, governance
is about reducing the risk of change. Governance includes the
policies, processes, and tools that organizations use to ensure that
software deployments are carried out in a consistent, controlled,
secure, and compliant manner. The challenge in governance is
balancing the need for agility and innovation with the need for
stability and risk management.

In the next few sections, we'll discuss traditional and modern approaches to deploy-
ment governance. We'll investigate how to automate the enforcement of our govern-
ing policies to make our delivery process more efficient. We'll review tools and
strategies that support our governance processes, and lastly, we'll look at the future of
deployment governance.

Traditional Approaches to Deployment Governance

Traditional approaches to deployment governance are those built for a pre-DevOps
world. In this world, changes to production were infrequent, risky, and executed by
a traditional operations team. Decision making was centralized and involved rigid
processes.

The Information Technology Infrastructure Library (ITIL) is one widely adopted
framework that characterizes a traditional approach. ITIL originally emerged in the
1980s as a response to the need for standardized IT management practices, evolving
from a collection of best practices into a comprehensive framework. It includes
several processes and practices that are directly relevant to deployment governance.

One of these is the change management process, which defines a structured approach
for managing all changes to services and infrastructure, including deployments.
It prescribes formal documentation of a proposed change, including its purpose,
scope, impact, and risk assessment. A Change Advisory Board (CAB) or a simi-
lar body assesses changes. The change request is formally authorized or denied
based on its merits and potential risks. If the change is approved and executed,

Governing Production Deployments | 113



a post-implementation assessment is conducted to ensure the change achieved its
objectives and identify any lessons learned.

The release management process is similarly formal and orders the planning, sched-
uling, and controlling of releases into production environments. It’s closely related
to the change management process and is intended to ensure that deployments are
executed in a controlled and transparent manner.

CABs are a typical feature of approaches like those defined by ITIL. A CAB is a com-
mittee of individuals responsible for formally assessing and approving or rejecting
proposed changes to software. This board might include a change manager responsi-
ble for coordinating change request reviews and tracking change implementation,
as well as technical experts, business stakeholders, security specialists, compliance
officers, and others. The intention is to reduce risk through thorough evaluation of
requests from several perspectives.

Moreover, CABs ensure accountability if anything does go wrong. While a highly
functioning CAB will provide the intended oversight, at their worst CABs consist
of inattentive reviewers that rubber-stamp reviews with little to no assessment. Or
a CAB may be nominally effective but hopelessly inefficient. Email-driven approval
processes are slowed by ignored emails, approvers being out of the office with no
delegation, and review meetings getting rescheduled.

Research shows that these traditional CAB processes aren't just inefficient, theyre
actually counterproductive to the stability they aim to ensure. Writing about their
landmark study of high-performing organizations in their book Accelerate, Forsgren,
Humble, and Kim explain that “external approvals were negatively correlated with
lead time, deployment frequency, and restore time and had no correlation with
change fail rate” In other words, approval by external bodies like CABs demonstrably
slows down delivery without improving stability.

This occurs because CABs divorce responsibility from knowledge; the people with
the deepest understanding of the changes aren’t the ones making approval decisions.
While these committees create the appearance of due diligence, they often function as
compliance theater, giving organizations someone to point to when things go wrong
rather than actually preventing failures. The illusion of control they provide can even
reduce vigilance among those implementing changes, since “the CAB approved it”
becomes a shield against accountability.

The expense of CAB meetings, coupled with the ineffectiveness and delay, was
tolerable when applications were released infrequently. As release frequencies have
increased, the trouble with CABs is increasingly clear.
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Modern Approaches to Deployment Governance

In previous chapters, we explored how to streamline the development process by
automating steps at every stage, enabling faster and more frequent software releases.
Modern approaches to deployment governance are similarly focused on automating
the manual steps that are an unnecessary obstacle to releasing software.

Instead of relying on committees and manual approvals for deployment decisions,
modern approaches favor automated decision making and deployments. Because the
stakes of production deployment are so high, this must be done with great care. In
this section we'll explore how.

In addition to automation, modern governance approaches also leverage contempo-
rary strategies and tools to manage compliance. We'll look at how to use audit logs to
simplify compliance, and tools like Open Policy Agent (OPA) to enforce security and
regulatory standards.

Automating decision making

With modern CI/CD tools we can empower our pipelines to make autonomous
deployment decisions. If we can ensure that our pipelines can adequately enforce
governance policies to maintain our standards, we can accelerate software delivery by
removing or minimizing manual approvals.

Consider these steps to automate deployment decision making in your delivery
process:

1. Identify your “pass” criteria

Identifying clear criteria for promoting builds is crucial for automating your
deployment process, but this can be challenging. One bank that we worked with
documented its controls in a three-inch-thick binder containing hundreds of
pages of regulations and policy. Often, decision makers may rely on both objec-
tive data and subjective judgment. Ambiguity can make it challenging to translate
human decision making into a set of rigid, automated rules. For example, a
decision maker might promote a build with a few minor test failures if they
believe the issues are low risk and unlikely to impact users. However, translating
this intuition into an automated rule that accurately assesses risk and user impact
can be complex. Al has a growing role in bringing the fuzzier elements of human
decision making into fully or mostly automated flows. If used this way, it should
be required to explain its recommendations and insights.
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2. Use “quality gates” to implement complex criteria to automate as many controls as

possible
Gates are checkpoints within a CI/CD pipeline that evaluate specific criteria to
determine whether a build should proceed to the next stage. Gates can take
into account test results, code quality metrics based on static analysis results,
code coverage, and adherence to coding standards, security scans results, and
performance metrics. Other tools allow you to introduce a pipeline step that fails
if the decision is “no,” or you can set up conditional execution based on your
specific criteria. Often, the simplest approach is to configure each set of tests to
fail if it doesn’t meet your standards. This way, if any step fails, the entire pipeline
halts, preventing the promotion of a substandard build.

3. Consider historical results when automating nuanced decisions
For instance, security initiatives often start with a zero-tolerance policy for new
high-priority issues but tolerate existing ones while the team works through
them. This requires considering historical data, not just the most recent results.

4. Finally, standardize on that automation
Use the choice of standardization or painful manual compliance as an incentive
to use standardized tooling. Teams at the bank that we worked with were given
a choice to deploy to production by certifying that a release complies with all
of the controls detailed in the binder, or by using their standardized automated
processes and tooling. This became an easy choice.

Building strong audit trails to automate compliance

Deployment governance and compliance are closely related. Effective governance
practices are crucial in achieving and maintaining compliance with various regula-
tory standards and frameworks.

We reviewed several frameworks in Chapter 5, specifically security-related ones.
PCI DSS is one widely applicable example. It’s used to ensure that all companies
that accept, process, store, or transmit credit card information maintain a secure
environment. Regardless of the size or number of transactions you process, if your
organization handles cardholder data then you are subject to its requirements. The
major card brands (Visa, Mastercard, etc.) may impose fines or restrict your ability to
process card payments if compliance cannot be demonstrated.

While PCI DSS primarily focuses on securing cardholder data, several requirements
directly pertain to the software development and deployment process. This is to
ensure the overall security of the environment where this data is handled. For exam-
ple, PCI DSS requires that you develop and maintain secure systems and applications
by taking steps such as conducting reviews of custom code prior to release to
production and addressing common coding vulnerabilities. PCI DSS also includes
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testing requirements, mandating internal and external penetration testing after any
significant infrastructure or application upgrade or modification.

A strong and comprehensive audit trail is essential to demonstrating the practices
that compliance requires. And while your organization may not be subject to PCI
DSS requirements, many other frameworks that may be relevant will have similar
requirements of your development and deployment processes.

Your source control and CI/CD systems play a vital role here by capturing the gran-
ular details of every action taken within the delivery pipeline, from code commits
and builds to test results, deployments, and environment configurations, along with
the associated user, timestamp, and any relevant metadata. This includes logging
user actions, system events, artifact tracking, configuration changes, and external
integrations. By storing this information in a structured and accessible format, CI/CD
tools provide a versatile audit trail that is adaptable to any number of security and
regulatory frameworks.

Tools that support a strong audit trail allow your organization to demonstrate com-
pliance without maintaining separate logs for each framework. It also enables you to
proactively address potential security or compliance concerns.

Managing enforcement with Policy as Code

Policy as Code (PaC) can be instrumental in automating your production deploy-
ments while maintaining robust governance. PaC is the practice of defining and man-
aging security, compliance, and operational policies as code, allowing for automated
enforcement. Policies are defined in a declarative language and can be managed like
any other critical piece of code: versioned in source control, allowing for tracking,
collaboration and required code reviews, and rollback capabilities.

OPA is a popular open source policy engine used to implement PaC. With OPA,
every deployment is automatically evaluated against your defined policies, ensuring
consistent enforcement without slowing down your delivery process. Imagine your
deployment policy requires all container images to be scanned for critical vulnerabili-
ties before reaching production. Using OPA, you can express this PaC, and integrate
it into your pipeline. Now, every time a deployment is triggered, OPA automatically
scans the image and either allows the deployment to proceed if the image is clean
or halts it if vulnerabilities are found. This eliminates manual security checks and
ensures consistent adherence to your security standards without human intervention.

OPAss versatility extends beyond security checks. You can codify various deployment
policies, such as enforcing canary deployments, requiring approvals for specific
changes, or validating resource configurations. By automating these checks, you
gain confidence that every deployment adheres to your organization’s standards and
regulatory requirements. This not only accelerates your delivery process but also
reduces the risk of human error and noncompliance.
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Safeguarding the Deployment Process

Tightly controlling your governance mechanisms helps protect your deployment.
Developer empowerment is also critical in modern deployments. In practice, you
need to strike a balance between the two. While you want to enable developers to
adapt their deployment pipelines, you also need to safeguard against potential risks.
Malicious actors can tamper with or bypass the very governance mechanisms you put
in place, or they can be corrupted by human error. Alternatively, overly tight controls
on deployments can create another obstacle to efficient deployments.

OPA can help here too. With OPA you apply strict controls on the policy update
process itself, ensuring that any changes to your governance framework are carefully
vetted and compliant. By centralizing policy rules in OPA and applying them to pipe-
lines, you create a separation of concerns. This makes it more difficult for individual
developers to circumvent policies, as they would need to modify the central OPA
policies, which can be subject to stricter access controls, peer reviews, and audit trails.

As we increasingly rely on Al to generate our pipelines for us, OPA policies provide
both directional input to the Al as to what we want, and protection ensuring that the
output of the Al is in compliance with our standards.

Another important control in safeguarding your deployment process is implementing
robust RBAC. As discussed in Chapter 2, RBAC allows you to granularly control
who has access to modify pipelines and sensitive configuration settings within your
CI/CD platform. This ensures that only authorized personnel can make changes to
your deployment process, minimizing the risk of malicious activities.

By combining these approaches, you can centralize policy enforcement, ensuring
your deployments are tamper-proof and effectively monitored.

Future Trends in Deployment Governance

As in nearly every area of software development, AI and ML will drive important
future trends in deployment governance. Predictive analytics, for example, is a
branch of data analytics that applies ML techniques for analyzing historical data to
predict future outcomes. Applied to software deployments, predictive analytics can be
used to identify patterns and risk factors to flag potential issues. Vendors are creating
dashboards, such as Digital.ai’s “Change Risk Prediction,” based on trends like team
failure rates and defects found in testing. Today, most of these solutions are relatively
straightforward correlations found in broad sets. It's not unreasonable to expect more
insights from models as we go forward, especially from DevOps platforms with easy
access to wider data sets.

Your team can proactively address problems before they impact users. AI and ML
can be used to automatically enforce governance policies in real time, analyzing code
changes, configurations, and deployments to ensure compliance with security and
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operational standards. These advancements will empower organizations to deliver
software with increased speed, confidence, and resilience.

Reconciling Traditional and Modern Approaches

Within a traditional governance approach, ITIL defines a standard change as a pre-
approved, low-risk change with a well-defined procedure, allowing for quicker imple-
mentation with minimal formal authorization. By using modern DevOps practices,
relying on quality gates and modern policy enforcement, we can significantly de-risk
even complex software deployments. This level of control and reliability allows
these deployments to be treated as standard changes. Essentially, the inherent risk
mitigation within modern DevOps practices aligns with ITILs goal of standardized,
predictable change management, enabling faster and more frequent deployments
without compromising stability or compliance.

In “Production Deployment Strategies” we'll explore using progressive deployments
to further de-risk production deployments.

Production Deployment Strategies

In Chapter 4 we covered how to automate our deployment processes, and we have
now looked at how to mitigate risk through deployment governance practices. Next
we turn our attention to the actual business of deploying our software to production.
In this section we'll look at how to further mitigate risk with progressive deployment
techniques. With even the strongest governance and the most cautious progressive
deployments, our deployments may still fail. We must come prepared with a roll-
back strategy, so welll look at approaches to revert quickly. Lastly, we'll look at
tool selection. Choosing modern tools can help you make governance, progressive
deployments, and rolling back easy.

The Traditional Big-Bang Deployment

Before we look at modern approaches, we can remind ourselves of the traditional
approach—and what still may be required for some elements of stateful applications.
Traditionally, we would take our application offline, upgrade every instance of every
component of the application, and start the application back up. After a quick valida-
tion, we would expose it back to users, and watch it for a period of time to make sure
it looked healthy before deeming the deployment a success. If there was a problem,
we would take the application back offline and roll back the application to the best of
our ability—often a daunting challenge.

This traditional approach required application downtime, introduced significant risk,
and demanded significant attention from engineers. The opportunities to do better
are abundant.
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Using a Progressive Delivery Strategy

Software deployments can be like walking a tightrope—one wrong step and the
consequences can be severe. But progressive deployment strategies offer you a safety
net. By gradually rolling out changes and closely monitoring their impact, these
strategies minimize risks and allow for quick course correction if problems arise. In
this section we’ll look at a number of popular deployment strategies including rolling
updates, blue-green deployments, canary deployments, and the use of feature flags.

Deploying rolling updates

Rolling deployments are a very common delivery strategy in which you gradually
update an application or service by incrementally replacing instances of the old
version with the new version. This is done in a controlled manner, ensuring that
a certain number of instances are always available to handle user traffic during the
update process.

Rolling deployments have distinct advantages. They minimize downtime as the
application remains accessible throughout the update process. Importantly, rolling
deployments reduce risk. By updating instances incrementally, potential issues with
the new version can be detected and addressed early on, limiting their impact. And
this type of deployment can be customized to fit specific application needs, allowing
for endless adjustments to the speed and scale of the update process.

However, implementing and managing rolling deployments can be more complex
than other deployment strategies, especially for large-scale or distributed systems.
There is also potential for inconsistencies. During the update process, two different
versions of the application, running simultaneously, could lead to differences in
data or user experience. In addition, rolling back an ongoing deployment can be
complicated, and additional steps to preserve data integrity are required.

Implementation options are numerous. Kubernetes provides built-in support for
rolling updates through its Deployment object. New pods with the updated version
are gradually created, and old pods are terminated once the new ones are ready.
Container orchestration platforms (e.g., Docker Swarm, Nomad) offer similar mech-
anisms for rolling updates, allowing for incremental replacement of containers or
services. Load balancers can be used to implement rolling updates by gradually
shifting traffic from old instances to new instances as they become available. In some
cases, rolling deployments might be implemented using custom scripts or automation
tools that manage the update process and monitor the health of the application.

While rolling deployments require effort to implement, they offer a valuable option
for minimizing downtime and risk during application updates.
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Using blue-green deployments

A blue-green deployment is a release strategy that involves maintaining two identical
environments, typically referred to as “blue” and “green.” At any given time, only one
of these environments (usually blue) is live, serving production traffic.

When a new version of your application is ready, it is deployed to the inactive
environment (green). After testing and verification in the green environment, traffic
is switched over from the blue environment to the green environment, making the
new version live. Where a rolling deployment makes updates over time and different
traffic will experience different versions of the service, a blue-green typically features
a hard cutover. A switch is flipped and traffic, or at least new traffic, is moved
immediately from the old to the new. Figure 7-1 depicts blue and green environments
before and after deploying an update.
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Figure 7-1. Blue-green deployments involve running two identical environments for
seamless updates and rollback options (in the print book, blue appears in dark gray and
green appears in light gray)

The previous live environment (now blue) can be used for the next deployment, kept
as a backup in case a rollback is needed, or decommissioned.

A blue-green strategy offers distinct advantages:

Reduced downtime
Traffic is switched between environments, minimizing any disruption to users
and reducing downtime.

Easy rollbacks
If there are issues with the new deployment, traffic can be quickly switched back
to the previous version.

Improved testing
The new version can be tested in a production-like environment before going
live.
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The main disadvantage lies in the increased infrastructure cost, as maintaining two
separate, identical environments can be expensive. Additionally, blue-green deploy-
ments might not be suitable for applications with complex state management or
database schema changes, because synchronizing data between environments can be
challenging.

A more advanced blue-green model can overcome most of the infrastructure cost
challenge by integrating TaCM practices. During steady-state production, only one
instance is in existence. At the start of the deployment, the deployment triggers an
IaCM tool to provision a new instance, so both blue and green exist. At the conclu-
sion of the process, the excess instance is de-provisioned. As a result, the excess
infrastructure only needs to exist for the duration of the blue-green deployment.

Using canary releases

Canary releases offer another progressive strategy similar to rolling updates. A new
version of the application is rolled out to a small subset of users or servers. This “can-
ary” group acts as a test bed, allowing you to monitor the new version’s performance
and stability in a real-world production environment before making it available to all
users.

In a typical canary deployment, only a small portion of traffic (e.g., 5% to 10%) might
be directed to the newly deployed version. The performance, stability, and error rates
of the new version are closely monitored and compared with those of the existing
version. Metrics like response times, CPU usage, and error logs are analyzed to iden-
tify any potential issues. If the new version performs well in the canary environment,
the percentage of traffic directed to it is gradually increased, allowing more users to
access it. This process continues until the new version completely replaces the old
one. If any issues or performance degradation are detected during the canary phase,
the deployment can be rolled back quickly, minimizing the impact on users.

Canary deployments may be implemented with simple metric thresholds, but they
increasingly leverage AI or ML capabilities to determine whether the new version
performs satisfactorily. Traditionally, canary deployments have focused on perfor-
mance benchmarks, but we can expect that in the future they will increasingly also
tap into business metrics, stopping the rollout if the new version of the application is
harming the business, even if it is not crashing.

While both canary deployments and rolling updates aim for gradual and controlled
software releases, they differ in their focus. Rolling updates solve for minimizing
downtime and service disruption across a service infrastructure. Canary deployments
focus on metric-guided decision making about whether to gradually increase traffic
to a new release or roll back to the previous version.
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Using feature flags

Feature flags provide a strategy for deploying features in a progressive manner. Think
of feature flags like hidden switches within your code, allowing you to turn features
on or off for specific users or groups without deploying new code. This gives you
granular control over who sees what, enabling A/B testing and targeted rollouts.
Feature flags are similar to other progressive deployment strategies in that they allow
you to monitor performance and gather feedback in a real-world environment and
use this information to mitigate risks. However, feature flags operate at different
levels; they control functionality within a single version. Other progressive strategies
test an entirely new version.

Feature flags offer benefits beyond deployment risk mitigation, and we’ll return to
them in Chapter 8.

Rolling back

We've explored a few progressive deployment strategies, but your options are innu-
merable. Variations and hybrid approaches that blend elements of rolling updates,
blue-green deployments, canary releases, and feature flags are all possibilities. The
common thread among these strategies is a controlled rollout, allowing you to stop
a deployment and roll back to a previous version if you need to. With a strategy like
blue-green deployments, this is an easy proposition: your previous version stands
at the ready. With a rolling update or a canary deployment, the rollback process
is a matter of removing traffic from nodes with the defective software and then
systematically replacing those nodes with the previous software version.

Rolling back involves not only redeploying the previous stable version of software,
but also its associated configurations, dependencies, and data. Rolling back to a
previous state can be as complex or more complex than the deployment itself.
Certain deployment approaches will facilitate dependable rollbacks. For example,
if the deployment is idempotent, meaning it can be repeated and achieve the same,
nondestructive results, a redeploy of a prior version will be equivalent to a rollback.

Testing rollbacks is crucial to ensuring you can roll back without fear. It’s not enough
to simply have a rollback mechanism in place; you need to regularly validate its
readiness. This involves simulating various failure scenarios and then executing the
rollback procedure to ensure it swiftly and reliably restores the previous stable ver-
sion. Thorough rollback testing verifies that the application, its data, and its depen-
dencies are correctly reverted. Depending on the application and its data storage
mechanisms, rollbacks may require data restoration or migration to ensure data con-
sistency. Regularly test procedures to ensure they work as expected in all scenarios.

With complete confidence in your rollback procedures, you can then configure
rollbacks to trigger automatically based on deployment health. Verifying deployment
health is a topic we'll get into in the next section. Instead of relying on manual
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intervention, the system automatically reverts to the previous stable version when
predefined thresholds are breached. This not only reduces the burden on your opera-
tions team but also takes human error out of the equation to minimize downtime.

Special considerations for specific architectures

Deployment and rollback complexities vary significantly depending on the software
architecture. Monoliths, with their tightly coupled codebase, often require complete
deployments and rollbacks that impact the entire system. Microservices, on the other
hand, offer more granular deployments and rollbacks, targeting individual services.
However, this interconnectedness means that dependencies must be carefully man-
aged to ensure consistency across services. Distributed monoliths share characteris-
tics of both monolithic architecture and microservices and combine the deployment
complexities of microservices with the interdependency issues of monoliths.

Databases add another layer of complexity. When updates involve breaking changes
to the structure of persistent data, strategies like “expand and contract” are needed.
This strategy involves adding new database fields or tables alongside the existing
ones, deploying the updated application to utilize the new structure, and eventually
phasing out the old fields. The approach is complex to implement, but it is often
required to ensure data integrity when supporting progressive deployment strategies
and clean rollbacks.

Choosing the Right Tools

Armed with a progressive deployment strategy and robust rollback capabilities, you
can deploy to production with confidence. But to truly unlock the power of these
strategies, you need the right tools at your disposal. Modern deployment tools make
all the difference, offering seamless support for progressive deployment strategies out
of the box.

When selecting a tool to orchestrate your software deployments, it’s essential to
look beyond the basics and consider how well a given tool aligns with your specific
needs. If youre planning a transition to automated deployment decisions alongside
adopting new continuous delivery tools, understanding all the factors that go into
your promotion decisions up front will help you choose the right tool with the
required governance and gate capabilities. In addition, ensure that the deployment
tool seamlessly integrates with your target environments, whether its the cloud,
on-premise servers, or a hybrid setup. Equally important is the tool’s ability to handle
your specific application types and architectures, including any complex database
deployments or coordinated multiservice releases.

Beyond infrastructure and architecture compatibility, the deployment tool should
include out-of-the-box support for your preferred progressive deployment strate-
gies, ensuring you can easily implement canary releases, rolling updates, or other
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techniques. Robust rollback mechanisms should be a first-class concern, because
they allow you to quickly revert to a previous stable version in case of unexpected
issues. Furthermore, consider whether the tool integrates with your existing feature
flag management system or offers its own feature flagging capabilities, giving you
granular control over feature releases.

Verifying Production Deployments

Even the most diligent governance doesn’t eliminate the need for robust practices to
systematically verify your production deployments. In this section we'll look at the
role of observability. We'll discuss modernizing your verification processes and look
at testing strategies specific to production deployment verifications.

Observability in Deployments

Verifying your deployment starts with observability. Observability simply refers to
the ability to understand a system’s internal state by examining its external outputs.
Observability gets you from knowing that something is wrong to understanding
why it's wrong, which enables faster troubleshooting and more effective root cause
analysis. Observability data encompasses three key pillars:

Metrics
These provide quantitative measurements of system performance, such as
response times, error rates, and resource utilization. By tracking trends and
anomalies in these metrics, teams can quickly identify potential issues and assess
the impact of a new deployment.

Logs
Logs offer detailed records of events and errors occurring within the application
and its infrastructure. Analyzing log data helps pinpoint the root cause of prob-
lems and understand the sequence of events leading to an issue.

Traces
Traces provide a visual representation of how requests flow through the sys-
tem, highlighting bottlenecks, latency issues, and dependencies between differ-
ent services. This helps identify performance issues and optimize application
architecture.

Modernizing the War Room

Traditional deployment verification often resembles a high-stakes war room scenario
with engineers monitoring dashboards and logs, ready to manually intervene at the
first sign of trouble. The process is highly manual, relying on human interpretation
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of observability data. It is also reactive, with teams often only scrambling to address
issues after they have impacted users.

This approach is not only stressful and inefficient but also prone to misses and slow
response times. Moreover, it often leads to inconsistent verification procedures and
limited visibility into the root cause of issues.

Modernizing deployment verification involves automating these manual tasks and
human decisions. Instead of relying on engineers to monitor dashboards and logs,
automated systems take over, continuously analyzing telemetry data and triggering
alerts when anomalies are detected. The shift from reactive to proactive monitoring
reduces the need for human intervention and accelerates response times.

The trick to achieve this automation is to integrate your deployment tools with your
observability platforms. The integration can take different forms depending on the
tools used. In one approach, your CI/CD tool notifies the observability platform
when a deployment is in progress, providing a “hook” that can be used to trigger
a rollback. The observability platform then analyzes telemetry data and decides
whether to initiate a rollback, calling the hook provided by the CD tool.

Alternatively, CD tools like Harness can be configured to watch one or more observ-
ability tools for signs of trouble during the deployment process. If issues are detec-
ted, the CD tool can automatically trigger its own rollback mechanism, halting the
deployment and reverting to a previous stable version. This tight integration between
deployment and observability tools enables a seamless and automated verification
process, minimizing downtime and ensuring faster feedback loops.

In either case, the industry no longer tolerates outages and seeks to detect indicators
that trouble is brewing before an application fails. As a result, AI/ML is used to
analyze multiple data sources to identify anomalies that indicate a likelihood of fail-
ure. Al anomaly detection has become a central component in modern deployment
verification. Unlike traditional monitoring, which relies on predefined thresholds,
these systems build statistical models of normal application behavior across hundreds
of metrics and can detect complex, multidimensional anomalies that would be impos-
sible to define with static rules. This capability is particularly valuable during the
critical minutes following a production deployment, when subtle performance issues
might otherwise go unnoticed until they escalate into user-impacting incidents.

Deployment verification systems integrate these Al capabilities into automated verifi-
cation gates, providing continuous assessment throughout the deployment process
rather than point-in-time checks. When anomalies are detected, these systems can
automatically pause progressive rollouts, or even automatically trigger the rollback
process.
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Testing Production Deployments

We discussed testing at length in Chapter 4. We return now to look at test strategies
particularly suited to verifying in production. Verifying production deployments
requires a layered testing approach.

Synthetic testing can be paired with phased or progressive deployments. By simulat-
ing typical user interactions and transactions in a production environment, synthetic
tests run through scenarios to catch issues quickly. This allows teams to address prob-
lems early on, either by rolling back the deployment or by implementing necessary
fixes.

Beyond the initial deployment phase, ongoing testing in production is essential for
ensuring long-term stability and performance. Synthetic testing continues to play
a valuable role, providing continuous monitoring of critical user journeys and iden-
tifying any regressions or performance degradations. Chaos engineering, which we
covered in Chapter 6, takes this a step further by deliberately injecting failures into
the system to test its resilience and ability to recover.

Another important aspect of ongoing testing is progressive feature disclosure. This
involves gradually rolling out new features to a subset of users, allowing teams to
gather feedback and monitor performance before a full release. Techniques like A/B
testing enable comparisons between different versions of a feature, helping identify
the most effective implementation. This controlled approach to feature releases min-
imizes risk and allows for data-driven decisions based on real user behavior. By
combining synthetic testing, chaos engineering, and progressive feature disclosure,
organizations can establish a comprehensive testing strategy that ensures continuous
verification and improvement of their production deployments.

Summary

As Al continues to transform production deployments, the connection between
deployment strategies and feature management becomes increasingly important.
Al-powered deployment verification systems don't just monitor overall application
health; they can now track the impact of individual features within a deployment,
providing granular insights that inform both rollback decisions and future feature
releases. These systems create a continuous feedback loop where deployment data
feeds into feature flag decisions, and feature behavior informs deployment strate-
gies. Modern platforms analyze feature performance patterns across deployments
to recommend which features should be gradually released through feature flags
versus those that can be safely deployed traditionally. This intelligence helps teams
balance development velocity with operational stability, creating a more sophisticated
approach to managing both deployments and features in production environments.
In Chapter 8, we will focus in depth on feature management.
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CHAPTER 8
Feature Management and Experimentation

In Chapter 7, we explored the challenges and best practices for deploying software to
production. We focused on strategies to mitigate risk and ensure reliability, looking
at progressive deployment strategies, paired with robust rollback mechanisms. This
approach helps us identify issues in new software versions early to safeguard the
integrity of production systems. Recall that we touched on feature flags as one
important progressive deployment strategy; feature flags are a mechanism to deploy
individual features within a single version of software in a progressive way. In this
chapter, we will continue the discussion on the use of feature flags as a tool for
managing feature deployment.

We will also dive deep into another role of feature flags—how they can drive experi-
mentation. While feature flags are great for reducing deployment risks and enabling
progressive delivery, their impact goes far beyond that. When enhanced with Al they
empower you to run experiments to learn about your users, optimize your feature
design ideas, validate hypotheses, and make data-driven decisions that improve prod-
uct usability, engagement, and overall business outcomes.

Feature management and experimentation management are closely related—feature
flags are the fundamental on/off switches that control whether a specific piece of
functionality is enabled. Feature management systems provide the infrastructure for
controlling how and when features are released to which users under which condi-
tions, while experimentation leverages this control to measure the impact of each
variation and help teams make data-driven decisions. However, as powerful as feature
management with feature flags is, they come with their own risks and challenges,
which we'll also explore.

Recall our discussion of the Knight Capital incident in Chapter 7. A faulty software
deployment led to $460 million in losses within 45 minutes. The incident occurred
when Knight Capital deployed a new version of its trading software that reactivated
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a dormant piece of legacy code. A misconfigured feature flag was to blame. This flag,
meant to control whether a piece of legacy code was active or inactive, was mistakenly
enabled on some servers but not others. The inconsistency triggered outdated logic,
leading to over four million erroneous trades in less than an hour.

While feature flags offer immense potential to help teams deliver at scale, as the
Knight incident shows, their misuse or mismanagement can introduce significant
risks. Effective feature management requires thoughtful planning, thorough testing,
and strong governance to prevent these kinds of disasters.

Al is transforming feature management systems by making experimentation and
implementation dramatically more accessible and insightful. Modern AlI-powered
platforms can interpret statistical results in plain language, suggest optimal rollout
strategies based on user patterns, automatically detect anomalies, and even generate
implementation code tailored to specific experiments. Al augmentation reduces the
cognitive load on developers while enabling product teams to perform more sophisti-
cated experimentation.

In this chapter, we'll examine the limitations of traditional homegrown feature man-
agement solutions that lack AI capabilities, and explore how modern, Al-enhanced
systems not only reduce risks but also unlock the full potential of feature manage-
ment and experimentation as strategic tools for delivering high-quality software.

Benefits of Feature Management
in Modern Software Development

Imagine that our organization is implementing a payment platform that handles basic
online transactions for small businesses. This platform supports payment processing,
invoicing, basic analytics, and integrations with e-commerce platforms. We release
new features continuously and rapidly to make iterative improvements and address
user feedback.

In this section, we'll look at how we can use modern feature management to free our
organization from the constraints of traditional release processes in order to speed
up our payment platform release cycles. We'll discuss how to use feature management
to support collaboration across teams and progressive delivery. Lastly, we will look at
how feature flags can help us manage technical debt.

Speeding Up Development Cycles with Feature Flags

At their simplest, feature flags let us deploy new features that are “turned off,” decou-
pling deployment from feature release. Then, we can flip our feature flag like a switch
to activate the feature later on, without having to deploy new code. This approach
helps us realize trunk-based development. As we looked at in Chapter 2, continuous
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integration involves regularly merging code changes into a shared repository, with
automated testing ensuring the quality of each integration. Trunk-based development
builds on this by encouraging developers to make small, frequent commits directly to
the main branch, often called the “trunk”

Al-powered systems speed the transition to trunk-based development by generating
the code needed to wrap code blocks with feature flags from a simple prompt. This
reduces the cognitive burden on developers who may be new to feature flagging.
Wrapping all new changes with feature flags ensures the main branch remains stable,
even with frequent small commits.

Alternatives to trunk-based development involve long-lived feature branches. With
these alternatives, integration becomes increasingly difficult over time because when
multiple teams work in isolated branches for extended periods, they often discover
costly conflicts only during integration. The delayed integration also weakens the
benefits of continuous integration practices, as problems might not be detected until
long after the code was written. Trunk-based development is widely regarded as an
industry best practice because it helps teams minimize merge conflicts and maintain
a steady flow of updates to the main branch. The more frequently changes are
merged, the higher the likelihood that the main branch remains deployable at any
moment. This means faster, more reliable releases.

In the absence of feature flags, it’s difficult to deploy the small changes that character-
ize trunk-based development because all changes become immediately active in the
production environment. This necessitates tight synchronization of releases among
teams, limiting the ability to safely merge and deploy incomplete features.

Feature flags provide an elegant solution to this challenge. By enabling developers
to wrap new features or experimental changes within feature flags, they can commit
their work to the main branch even if the functionality is not fully developed or is not
production-tested. The flag effectively acts as a gatekeeper, ensuring that the incom-
plete feature remains turned off in production until you are ready. The approach
eliminates the need for long-lived feature branches. This helps teams maintain a
high deployment velocity and validate other aspects of the codebase without being
hindered by feature completion timelines.

Decoupling Teams to Reduce Coordination Overhead

Going back to our payment platform, let’s say we want to introduce a new “Sub-
scription Payments” feature. The frontend team is responsible for updating the user
interface to support recurring payment options, the backend team must implement
APIs for managing subscription plans, and the analytics team is tasked with tracking
user behavior for subscriptions.
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Without feature flags, the release becomes a tightly coupled, high-risk event. The
frontend team can't deploy the updated UT until the backend APIs are live, leaving
their work unfinished in staging. The backend team can’t fully test APIs because
the frontend isn’t integrated, delaying the validation of workflows. The analytics
team can’t implement tracking because the subscription system isn’t functional in
production.

This dependency forces all teams to align their schedules and coordinate a large,
monolithic, and risky rollout. Any delays by one team ripple across the others, creat-
ing bottlenecks. If a critical bug is discovered, rolling back the feature means undoing
work across all teams, often requiring a redeployment of the entire application.

Using feature flags, each team can work independently and release their changes
incrementally. The frontend team can deploy the subscription management UT early,
hiding it behind a feature flag. Doing so allows them to validate basic functionality
in production while awaiting backend readiness. The backend team can implement
and deploy subscription APIs to production, also gated by a feature flag. These APIs
can be tested with test data or limited users, even if the frontend is not yet live.
The analytics team can add tracking mechanisms and deploy them behind another
flag. They can simulate user flows to ensure metrics are collected correctly without
exposing the functionality to actual users.

Once all components are ready, the feature flags are toggled on for internal testing.
Once validated internally, the feature can then be rolled out to production. Not only
have we reduced the risk in releasing the “Subscription Payments” feature, but we've
also reduced the overhead in coordinating across multiple teams. With Al-powered
feature flags, this coordination becomes even more streamlined. AI assistants can
automatically suggest flag dependencies across teams, alert when conflicts might
arise, and even recommend optimal sequencing for multiteam feature releases based
on historical deployment patterns.

Supporting Progressive Delivery with Phased Rollouts

When our “Subscription Payments” feature is ready to go, we can use feature flags
to gradually roll out the update. With modern feature flag systems we can apply
target criteria, such as user attributes or percentages, to enable a feature for a subset
of users. This allows us to verify in production by slowly enabling the feature,
monitoring its performance, and making adjustments before expanding to a larger
audience.

During the phased rollout, we are looking at key metrics such as API error rates,
response times, payment success rates, and customer feedback. If we observe anoma-
lies, like a spike in failed payment attempts, increased latency, or reports of a broken
user experience, they could indicate that the new feature has introduced issues that
we need to investigate before proceeding.
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AT significantly enhances progressive rollouts through predictive targeting and adap-
tive control. ML models analyze user behavior patterns and predict optimal rollout
strategies—determining which users should see a feature first for maximum impact.
During rollout, Al systems can monitor metrics in real time and automatically
adjust the pace based on performance data, accelerating successful deployments while
quickly identifying and containing problematic ones.

If we do find problems, we can easily roll back by simply toggling the flag off. The
new functionality is disabled for all users without requiring a redeployment of the
codebase. The system instantly reverts to the stable, previously tested version of
the application, minimizing disruption and giving the team time to investigate and
address the issue.

Manage Tech Debt with Feature Flags

Feature flags aren’t just for launching new functionality—they can serve as a safety
net when modernizing legacy code. In this way they act as a dimmer switch rather
than just an on/off button. When refactoring, you can gradually transition from old
code to new implementations while maintaining the ability to roll back if issues arise.

Modern, Al-native feature management systems excel at managing this complexity by
tracking feature flag usage patterns and identifying flags that are no longer needed.
ML algorithms can analyze code dependencies, flag states, and usage metrics to
automatically identify obsolete flags and recommend their removal, preventing the
accumulation of technical debt while maintaining system integrity.

Here’s how this typically works in practice: First, you write your new, improved code
implementation alongside the existing code. You then create a feature flag that lets
you control which version runs—the old or new implementation. This allows you
to test the new code in production with a small percentage of traffic while most
users continue using the proven legacy code. As you gain confidence in the new
implementation, you can gradually increase the percentage of traffic it handles.

This approach is particularly valuable for large-scale refactoring projects. Rather than
performing a risky “big bang” replacement, you can use feature flags to migrate users
in controlled waves. If you discover any issues, you can immediately revert to the old
system for affected users without disrupting your entire user base.

The true power of this pattern emerges in complex systems where multiple com-
ponents are being modernized simultaneously. Feature flags give you fine-grained
control over your modernization effort, letting you coordinate multiple refactoring
initiatives while maintaining system stability.
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Optimizing Results Through Experimentation

We've seen how feature flags can help us release faster with trunk-based development
and eliminate the need for coordinated multiteam rollouts. We've also seen how we
can derisk our releases with progressive feature rollouts. But does this matter if we are
not releasing features that provide value? This is where Al-powered experimentation
comes in.

Only a handful of feature management systems include robust support for experi-
mentation, enabling teams to run controlled, measurable tests directly within their
existing application infrastructure. By combining fine-grained targeting, randomized
percentage assignments for user populations, and automated statistical analysis, these
systems allow engineering and product teams to conduct experiments seamlessly
within the same infrastructure used for feature rollouts. This eliminates the need for
separate experimentation platforms, which means you only need to manage, monitor,
and write integration code for a single pattern.

Well-designed experiments transform product development. Rather than relying on
subjective opinions and endless debates, you can use real-world user behavior to
guide your decisions. Doing so replaces conference room speculation and endless
debate with concrete data about the changes and new features that will actually
engage your users. Feature flags allow us to segment users into groups (e.g., A and
B) and expose each group to different variations of a feature. For example, in an
online payment platform, one group might see a “Quick Pay” button, while another
experiences an updated “Express Checkout” workflow.

By using feature flags, we can deploy these variations live in parallel, enabling side-
by-side experiments that provide real-time, direct comparisons between versions.
This approach offers a clear advantage over testing variations in succession, where
differences in regular fluctuations, seasonal differences, the presence of marketing
campaigns, or other factors can skew results. With side-by-side experiments, we
ensure that both versions are subjected to the same conditions to get the most reliable
and accurate insights. These comparisons help us confidently identify the version that
delivers the most value to users, without the noise and uncertainty that come from
sequential testing.

Modern AI dramatically accelerates our experimentation capabilities. For example,
an ML approach known as the “multiarmed bandit” uses reinforcement learning
to dynamically allocate more traffic to better-performing variants in real-time. For
example, if early data shows “Express Checkout” outperforming “Quick Pay,” the Al
automatically routes more users to the winning variation while the experiment is
still running, maximizing business value (and minimizing loss) while the test is in
progress. This adaptive optimization ensures users experience the best version sooner
without waiting for manual analysis and decisions.
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Building Well-Structured Experiments

Effective experimentation begins with a well-defined hypothesis that aligns with your
business objectives and outlines specific, measurable goals. For instance, you might
hypothesize that the “Express Checkout” workflow will increase conversion rates by
streamlining the payment process. It is important to remember that the purpose of
an experiment isn’t just to confirm your hypothesis—it’s to learn. Early results that
contradict your hypothesis aren’t failures; these experiments provide valuable insights
that may save months of investment in a project unlikely to achieve its goals.

A good experiment ensures that results are meaningful and actionable. It separates
feature performance from external factors so that observed outcomes can be attrib-
uted solely to the changes being tested. As experimentation scales across teams and
products, it’s important that experiments are guided by the following criteria.

Strong, clear metrics

Every experiment should begin with a well-defined hypothesis and a key metric that
captures what success looks like. For example, if you're testing an “Express Checkout”
workflow, your primary metric might be the conversion rate from checkout initiation
to completion. Clear metrics focus the experiment, enable measurable progress, and
prevent post hoc rationalization. It’s equally important to identify guardrail metrics—
secondary indicators like error rates or customer churn—that flag unintended side
effects and keep you from blindly optimizing a single number at the expense of
overall health.

Targeted and randomized audience

Next, focus on targeting your experiment effectively. The ability to tailor experiments
for specific user segments—such as by device type, location, or customer tier—is
essential. But even within these tailored audiences, randomization must be main-
tained to avoid biases in results. For example, don’t test the same feature on one
region versus another without random sampling. This ensures that any observed
differences are due to the feature itself, not external factors. And remember, when
managing multiple experiments, audience overlap becomes a concern: ensure that
users aren't exposed to conflicting experiments that could distort the findings.

A statistically significant sample size and experiment duration

Before running your experiment, calculate the minimum sample size using a power
analysis. This helps define how long the experiment needs to run before reliable
conclusions can be drawn. An “underpowered” experiment can waste valuable time,
as insufficient sample sizes can lead to inconclusive or misleading results. Consider
experiment duration carefully: if your results seem inconclusive, having predefined
stopping criteria helps you decide when to end an experiment, due to either achieving
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statistical significance or meeting performance thresholds. This approach prevents
wasted effort and ensures the team isn’t stuck in endless experiments with ambiguous
outcomes.

Experiment separation

In practice, most organizations don't run one experiment at a time. Instead, there
may be dozens of live experiments across different parts of the product, which
introduces new complexity. Teams must consider test interactions—especially when
experiments overlap or target the same users. Well-governed experimentation plat-
forms help by automatically tracking exposure, enforcing mutual exclusivity where
needed, and surfacing possible conflicts.

Al-powered interpretation

Modern AT assistants that are integrated into feature management platforms simplify
how teams interpret experiment results. Rather than requiring statistical expertise
to analyze complex data, Al can interpret results in plain language, explaining the
implications of experimental outcomes. For example, when an experiment shows a
5% increase in conversion rates but a slight decrease in average order value, you can
ask the Al to explain these trade-offs and their business implications. The AI can
analyze multiple metrics simultaneously, identify correlations, and suggest potential
relationships that might not be immediately obvious.

To make confident product decisions, we need to trust the insights our experiments
provide. By designing experiments with these key elements, we can ensure their
reliability and accuracy.

Integrating Experimentation with Progressive Delivery

Just as we progressively roll out new features like “Subscription Payments” to reduce
risk, we can use feature flags to implement experiments in a controlled and safe man-
ner. For example, imagine we develop a revised “Subscription Payments” workflow.
This iteration aims to simplify the user experience. Our hypothesis is that this version
will lead to an increase in subscription sign-ups.

To test this hypothesis, we use feature flags to divide users into two groups: one
experiences the original workflow, while the other interacts with the updated version.
By randomly assigning users, we ensure a fair comparison and collect reliable data
on key metrics, such as sign-up rates and completion times. That approach allows us
to evaluate the performance of the new workflow in real-world conditions without
exposing the entire user base to potential issues.

If the metrics show that the updated version outperforms the original in driving
sign-ups, we can begin gradually rolling it out to a larger percentage of users. The
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iterative process not only minimizes risk but also ensures that we base our decisions
on real data that either confirms or refutes our hypotheses.

Establishing Guardrails

We talked about the importance of identifying a key metric when defining your
experiment’s hypothesis. It's equally important to identify one or more guardrail
metrics.

For example, we worked with a company that matches loan seekers with loan provid-
ers. Loan seekers use a sign-up flow to provide information about the type of loan
they are interested in along with a number of other details. The service is able to
match the user to the loan provider best able to meet their needs.

The product team was confident that a redesigned sign-up flow would improve the
quality of the loan matches. They started by carefully rolling this experiment out to
a small cohort of users. In rolling out, the team found that the new flow was causing
a substantially higher rate of drop-offs, users who navigated away before completing
the experiment. A guardrail metric, in this case drop-off rates, helped the team detect
in near real time and take action.

By analyzing the data, the product team could then decide what action to take.
They could shrink the cohort size or pause wider rollout, which would let them
use the experiment to continue to learn about the impact on the goal metric while
constraining side effects. Or, the product team could cancel the experiment altogether
if they concluded that the side effects were too detrimental to the overall business
value.

Guardrail metrics, like drop-off rates in the previous example, serve a different
purpose from goal metrics but are equally important in ensuring the success of an
experiment. While goal metrics measure the primary objective of the experiment—
such as improving conversion rates, increasing revenue, or enhancing user engage-
ment—guardrail metrics act as safety checks to monitor for unintended negative
consequences. Example metrics used for guardrails include bounce rate, page load
time, customer churn rate, error rate, and conversion rate on secondary product
lines.

Guardrail metrics help you maintain a holistic view of the experiment’s impact,
enabling you to balance progress on the primary goal with the overall health and
reliability of the product. By tracking both, you can make informed decisions about
when to continue, pause, or pivot their experiments.

The most effective guardrails are automated and seamlessly integrated into the exper-
imentation process. Modern feature management systems can monitor guardrails
in real time and enforce thresholds automatically. AI-powered anomaly detection
significantly strengthens guardrail monitoring by using ML to identify subtle patterns

Optimizing Results Through Experimentation | 137



that might escape human attention. These systems establish baseline metrics behavior
and automatically alert when experiment variations cause unexpected deviations,
even before they reach predefined thresholds. Additionally, AI can correlate multiple
metrics simultaneously to detect complex interactions that simple threshold monitor-
ing would miss.

Automation safeguards your systems by lessening the chance of inadvertently missing
performance degradation through human error. Making guardrails a core part of
the experimentation process helps payment platforms stay agile while maintaining
reliability. This approach ensures that new features can deliver value without risking
user trust.

Life Without Mature Feature Management Tools

While feature management systems offer immense value, how effective and cost-
efficient they are hangs on their implementation and governance. Relying on fragile,
homegrown solutions or multiple decentralized implementations can work against
you, particularly as these basic solutions lack the sophisticated Al capabilities that
define modern feature management platforms. It’s natural for many teams to start by
building their own feature management systems when their needs are basic. However,
as their needs become more complex, the effort to add more and more capabilities
becomes increasingly difficult to justify. The cost of this effort, and the technical
debt accrued, eventually outweigh any initial savings. In this section, we’ll explore the
drawbacks of DIY systems in greater detail.

Low-Quality Tools Impede Effective Feature Flag Management

Feature flags can become liabilities without proper tooling and governance. The
challenge lies in the gap between basic feature flag implementation and truly effective
feature flag management at scale. As feature flag adoption spreads across teams
and projects, first-generation solutions that focus only on simple toggling without
measurement, and in-house solutions initially built to solve simple use cases, quickly
reveal their limitations. Without sophisticated management capabilities, teams strug-
gle to maintain visibility and control over their growing feature flag ecosystem.

Consider a typical scenario: a development team implements dozens of feature flags
across their application using a basic toggle system. While this works initially, they
soon discover they can’t easily track flag ownership, monitor flag status, or man-
age flag lifecycles. The system lacks crucial capabilities like AI-powered automated
cleanup notifications, usage tracking, or dependency mapping. As a result, developers
lose sight of which flags are still needed and which should be retired. The code-
base becomes littered with “zombie flags”—permanent toggles that no one dares to
remove because they can’t determine if the flag is truly obsolete. Additionally, leaving
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zombie feature flags in place can gate abandoned or obsolete code, which may not be
tested or maintained, creating vulnerabilities and increasing technical debt.

Professional-grade feature management tools should provide comprehensive gover-
nance features, including clear ownership tracking, automated cleanup processes,
dependency visualization, and robust access controls. These capabilities ensure fea-
ture flags remain an asset rather than a liability as your system grows in complexity.

Minimal Support for Experimentation Limits Your Learning

Homegrown systems often lack the advanced capabilities required to support high-
quality experimentation. For example, while a basic feature flag system might allow
you to turn a feature on or off globally, it typically won’t support fine-grained tar-
geting by attributes like geography, device type, or customer tier. Similarly, these
systems rarely offer true randomized percentage rollouts, where user populations are
divided randomly and consistently to ensure fairness and reliability in experiments.
Advanced functionality, like using ML to optimize traffic routing, is well beyond the
grasp of even the most sophisticated homegrown tools. Without these capabilities,
experiments can produce skewed or untrustworthy results.

Additionally, modern experimentation systems include built-in tools for automated
statistical analysis and metric tracking, enabling teams to evaluate key performance
indicators (KPIs) and guardrail metrics directly within the platform. For instance,
if you are testing an updated checkout process on a payment platform, a modern
system can automatically calculate conversion rates, identify statistical significance,
and flag anomalies like increased error rates—all without manual intervention. Basic
systems, by contrast, rely heavily on external tools and manual data aggregation,
which increases operational complexity and the risk of errors. This lack of integra-
tion and sophistication makes it much harder for teams to experiment effectively,
ultimately limiting the potential for data-driven decision making.

Lack of Integrations Slows You Down

Another significant limitation of basic feature management systems is their lack of
integration with the broader software development ecosystem, which often results
in more hand-offs, manual steps, and complex, hard-to-maintain scripting. Modern
feature management systems address these challenges by tightly integrating with
critical tools and platforms, embedding feature management seamlessly into your
workflows.

Fragile Implementations Distract Your Team

Most notably, DIY systems typically dont scale well. They can be frail and prone
to performance bottlenecks. Homegrown solutions often lack formal service-level
agreements (SLAs) or dedicated support structures, leading to reduced uptime and
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reliability. When these systems encounter failures, your teams must devote valuable
resources to troubleshooting and resolving disruptions.

Conversely, a robust feature management system helps you deliver business value
efficiently and reliably. While building an in-house solution might be an easy way
to get started with feature management, these homegrown systems often struggle to
meet the evolving needs of high-performing development teams.

The challenges multiply when different teams across an organization develop their
own independent feature management implementations. This fragmentation creates
unnecessary complexity in several critical areas: managing feature deployments,
maintaining security standards, and establishing consistent governance practices
across the organization. In the following sections, we'll examine how centralizing
feature management through modern, purpose-built tools can streamline operations,
enhance security, and improve collaboration across teams.

Scaling Feature Management and Experimentation

Scaling feature management and experimentation requires Al-driven patterns that
streamline processes and ensure consistency. In this section we'll look at the advan-
tages of unifying feature management with a single implementation, leveraging smart
integrations to reduce manual work and improve collaboration. We'll explore how
modern platforms help automate governance, while leveraging your existing identity
management infrastructure. We'll understand how modern systems ensure scalability.
Finally, we'll see how Al-driven capabilities transform experimentation.

Unify with a Single Feature Management Implementation

We have worked with many large companies that seek to modernize their software
delivery processes. In this journey, they are often surprised to discover theyre jug-
gling a dozen or more independently built DIY feature management systems, some-
times mixed with partially implemented commercial or open source solutions. As
these organizations have grown, their software and delivery processes have become
more complex, and the need for a centralized feature management system becomes
clear. Fragmented implementations amplify the risk of misconfigurations, security
vulnerabilities, and noncompliance. In industries where auditability is critical, these
gaps make compliance an uphill battle.

Additionally, maintaining multiple bespoke systems across teams introduces more
and more technical debt. The effort and resources required to update, patch, and
synchronize these systems detract from delivering business value. Learning how to
work with multiple systems is also a tax on developers and product managers when
moving between teams.
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A centralized feature management implementation gives companies a single, consis-
tent view of feature flags across all environments and allows for safe, consistent
feature rollout capabilities across teams. With a unified platform, companies are
able to easily track the state of active flags, monitor their usage, and understand
dependencies between features. Lack of a unified view can lead to errors during
deployment. Dependencies can become tangled, and the very real risk of activating or
deactivating flags incorrectly increases, especially as the complexity of systems grows.

AT significantly enhances these integrations by automating contextual decision mak-
ing. When integrated with CI/CD pipelines, Al can automatically detect which fea-
ture flags are impacted by specific code changes, helping ensure that proper testing
occurs before deployment.

Reduce Manual Steps with Smart Integrations

Modern systems streamline workflows by embedding feature management directly
into the broader software ecosystem. Integrations with integrated development envi-
ronments (IDEs) allow developers to create and manage feature flags directly within
their coding environment, reducing context switching and streamlining the develop-
ment process. CI/CD pipeline integrations enable teams to incorporate feature flags
into automated build and deployment processes, allowing feature flags to become a
natural part of them.

Similarly, connections to task management, notification, and approval platforms like
Jira, Slack, Microsoft Teams, and ServiceNow ensure that feature flag changes can be
tracked, approved, and communicated in real time, keeping stakeholders informed
and reducing miscommunication.

With basic feature management systems, the configuration of the feature flags them-
selves is a key cause of developer toil. Implementing feature flags and experiments
traditionally requires developers to carefully configure SDKs, write targeting rules,
and ensure proper tracking of metrics. Modern AI systems address this issue since
they can generate this implementation code automatically based on your experiment
configuration. Here’s what makes it particularly powerful: with coding assistants
integrated into your IDE, the AT understands the context of your experiment and can
generate code that’s tailored to your use case.

For instance, if you've configured an experiment to test a new checkout flow for
premium users in certain geographic regions, the Al can generate all the necessary
code for your chosen programming language. This includes:

o Injecting the feature flag into your code with the proper syntax and API key
 Implementing any needed experiment tracking telemetry

+ Handling edge cases and error conditions
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The AI adapts its code generation to match your specific needs and can explain its
implementation choices. If you need to modify the generated code or implement it
in a different programming language, you can simply ask the AI to regenerate it with
your new requirements. This dramatically reduces the time from experiment design
to implementation while ensuring consistent, high-quality code.

By eliminating manual scripting and enabling automation across these tools, built-in
integrations create workflows that not only reduce toil but also improve collabora-
tion, efficiency, and agility.

Simplify Governance with Automated Audit Trails and Enforcement

Modern feature management systems simplify governance by automating crucial
processes such as approvals and policy enforcement, which helps your teams main-
tain control while reducing operational overhead. For example, you can set up
automated workflows to require mandatory approvals for any feature flag changes
in production, and require that those flags have been activated in test environments
first. Doing so ensures that sensitive environments are protected from unintended or
risky modifications, while allowing more flexibility in development or staging, where
experimentation and iteration are more common. This differentiation in enforcement
balances working efficiency with production stability.

Policies within these systems can also help standardize practices across teams. For
instance, consistent flag naming conventions can be enforced automatically, making
it easier for teams to understand the purpose of a flag at a glance, even as the number
of flags grows. Additionally, modern systems can guide flags through a defined
promotion lifecycle, ensuring that temporary flags used for testing or experiments
are properly retired once they’re no longer needed. For high-stakes changes, such as
deployments in production, these systems can mandate the use of golden pipelines—
predefined, validated processes that ensure rigorous testing and reliable rollouts. By
automating these governance tasks, modern systems eliminate ambiguity, align teams
with organizational standards, and significantly reduce the likelihood of misconfigu-
rations that could jeopardize reliability or security.

Leverage Your Existing Identity Management Infrastructure

Modern feature systems support single sign-on (SSO), allowing your team to use
existing credentials from in-house identity providers, and a system for cross-domain
identity management (SCIM) simplifies user provisioning and role assignments,
ensuring that the right accounts and permissions exist across systems. Along with
RBAC, you can enforce consistent governance, ensuring that only authorized users
can adjust feature flags or modify settings. This ensures every user has the privileges
needed for their role when they need it, no more and no less, reducing the likelihood
of security breaches and compliance violations. Together, SSO and SCIM enhance
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governance, streamline onboarding and oftboarding, and ensure secure, consistent
access control across teams.

Choose a Platform Built to Scale

Modern systems are built with scalability and reliability at their core. They leverage
content delivery networks and other features of low-latency, high-availability archi-
tectures to maintain performance under peak loads, which can grow significantly
over time as user bases and system complexity increase. These systems also employ
push architectures to propagate configuration updates instantly across environments,
enabling features like near-instant rollbacks or real-time targeting changes. By incor-
porating other best practices for mission-critical applications, such as redundancy
and fault tolerance, modern systems ensure that feature management remains robust
and responsive, even during periods of heavy traffic or unexpected demand spikes.

Summary

This chapter explored how feature management and experimentation serve as foun-
dational elements of modern software delivery, enabling teams to deploy code more
frequently while maintaining stability through progressive rollouts and robust roll-
back capabilities. We learned that feature flags not only help manage deployment
risk but also drive business value through experimentation, allowing teams to make
data-driven decisions based on real user behavior rather than speculation. Addition-
ally, we saw how modern feature management platforms overcome the limitations
of homegrown solutions by providing comprehensive governance, scalability, and
Al-powered capabilities that make experimentation more accessible and insightful.

As we turn to cloud cost management in Chapter 9, we'll explore another critical
aspect of operating at scale: understanding and optimizing the financial implications
of our architectural and operational decisions in cloud environments, where the
flexibility that enables rapid feature delivery and experimentation must be balanced
against resource efficiency and cost-effectiveness.
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CHAPTER 9

Al and Automation
for Cloud Cost Management

It's hard to overstate how important cloud environments and effective cloud cost
management strategies are to modern organizations. In 2025, companies worldwide
will spend an astonishing $723.4 billion on public cloud services, according to Gart-
ner projections. This represents a significant jump from $595.7 billion in 2024. Cloud
environments and services have become central to modern software delivery, and
cloud spending has become a substantial line item in IT budgets.

Managing these growing costs has become a complex problem. Recent industry
estimates suggest that 30% of cloud spending is wasted. The reasons are numerous:
organizations often provision more cloud resources than they actually need, leading
to unused or underutilized instances and forgotten services, which still incur costs.

In this chapter, we'll jump into the thorny problem of cloud cost management. We'll
look at how practices have evolved from the early days of cloud computing, giving
rise to the discipline of FinOps (financial operations). Since carbon footprint and
cloud cost management are interconnected, we'll look into how cloud cost manage-
ment leads to environmental sustainability initiatives.

We'll also explore how Al-powered solutions are addressing the challenges of unpre-
dictable spending, time-consuming optimization tasks, and the complexities of multi-
cloud governance. We will look at specific Al-driven strategies for optimizing cloud
resources, such as leveraging cost-effective pricing models and managing container-
ized environments. Furthermore, we'll explore how Al can power cloud governance
and compliance to ensure that your organization’s cloud investments are both effi-
cient and secure.
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The Evolution of Cloud Cost Management

We'll start by exploring how cloud cost management has changed over time and we'll
look at how FinOps provides a framework to address the challenges of cloud cost
management. Finally, we'll look at the importance of automation in FinOps.

Early Cloud Adoption and Initial Challenges

In the precloud era, organizations typically owned and maintained their own on-
premises infrastructure requiring significant up-front investments (capital expendi-
tures) in hardware and software. IT budgets were typically fixed and tied to the
depreciation cycles of these assets, which created a rigid framework. While costs were
predictable, this model was difficult to adapt to changing business demands.

Cloud computing, with on-demand, pay-as-you-go IT resources, flipped this model.
Spending went from capital expenditures to operational expenses, with costs spread
out over time based on actual usage. This provided a greater ability to respond to
market changes, scale operations, and avoid overprovisioning, but pay-as-you-use
brought new challenges. Early adopters of cloud services often faced unexpected
costs due to this model. Limited visibility into how cloud resources were being used
created new challenges, and keeping costs in check was a struggle.

The Rise of FinOps

Early cloud pioneers developed their own cost optimization practices to address
the challenges of managing cloud spending. Cloudability, an early cloud cost man-
agement platform, fostered a community around these challenges, leading to the
formalization of the term “FinOps” with the creation of the FinOps Foundation in
2019.

FinOps practices emphasize collaboration and shared ownership of cloud costs, as
well as individual and team accountability for cloud usage and its associated costs.
The key to FinOps is reliance on data and reporting to understand cloud spending
patterns and identify optimization opportunities. As with DevOps, an ethos of con-
tinuous improvement is important to FinOps. FinOps practices are meant to be
ongoing with iterative optimization of cloud usage and costs over time.

Core principles of FinOps

The FinOps Foundation defines six core principles to help an organization manage
cloud costs. Here’s a breakdown:

Teams need to collaborate
FinOps encourages close collaboration between technology, finance, and busi-
ness teams to foster a shared understanding of cloud costs and how they relate to
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business goals. Developers, engineers, and product managers are empowered to
make informed decisions about their cloud usage and contribute to optimization
efforts.

Decisions are driven by the business value of the cloud
Cloud spending decisions should be driven by the value they bring to the busi-
ness, not solely by cost considerations. FinOps encourages understanding the
cost of delivering a product or service in the cloud, enabling better pricing
strategies and investment decisions.

Everyone takes ownership of their cloud usage
Individuals and teams are accountable for the cloud resources they consume and
the associated costs. This empowers teams to make responsible choices about
their cloud usage and contribute to cost optimization efforts.

FinOps data should be accessible and timely
Cloud spending data should be readily accessible and up-to-date, enabling timely
analysis and decision making. Organizations should leverage data analysis and
reporting to understand cloud spending patterns and identify optimization
opportunities.

A centralized team drives FinOps
A dedicated FinOps team, often led by a FinOps practitioner, drives the imple-
mentation and ongoing refinement of FinOps practices. This team handles rate
optimizations while maintaining a shared accountability model that allows engi-
neering teams to focus solely on optimizing their environment usage.

Teams take advantage of the variable cost model of the cloud
FinOps encourages leveraging the variable cost model of the cloud to scale
resources up or down as needed, aligning spending with business demands. This
principle emphasizes using cloud-native tools and strategies to optimize costs,
such as right-sizing resources, leveraging discounts, and automating cost-saving
measures.

Phases of FinOps

The three phases of FinOps—Inform, Optimize, and Operate—provide a framework
for organizations to progressively improve their cloud financial management. Here’s a
closer look at each phase.

Inform. This phase focuses on gaining visibility into your cloud spending and usage
patterns. In this phase, we ask questions like:

What are we spending on the cloud?
This involves gathering data from various sources, including cloud provider
billing systems, to create a centralized view of your cloud costs.
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Where is the money going?
This requires allocating costs to specific departments, projects, or business units.
Tagging resources and using cost allocation tools are crucial for this step.

How are we using cloud resources?
This involves analyzing usage patterns to understand how different teams and
services contribute to overall cloud expenses.

As part of this investigation, we may create reports and dashboards to visualize
spending patterns and identify trends. We are also interested in anomaly detection,
using tools to identify unusual spending spikes or anomalies that require further
investigation.

Optimize. Once we have an understanding of our cloud spending, it’s time to opti-
mize. This phase focuses on identifying and implementing cost-saving measures:

Right-sizing resources
Analyze resource utilization and adjust instance sizes, storage tiers, and other
configurations to match actual needs.

Leveraging discounts
Take advantage of discounts offered by cloud providers. We'll look more at this in
the next section.

Automating cost optimization
Use automation tools to schedule instance shutdowns, optimize resource alloca-
tion, and enforce cost policies.

Eliminating waste
Identify and eliminate unused or underutilized resources, such as idle instances,
orphaned volumes, and unattached storage.

Operate. The Operate phase is about establishing ongoing processes for managing
and monitoring cloud costs. We embed FinOps practices into our culture and
workflows:

Budgeting and forecasting
Set clear budgets for cloud spending and use forecasting tools to predict future
costs.

Continuous monitoring
Track cloud spending and usage patterns on an ongoing basis to identify any
deviations from budget or unexpected spikes.
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Automate cost optimization
Automate common tasks by implementing scripts or using cloud provider tools
to handle routine activities like resource cleanup, right-sizing, and reservation
management.

By iterating through these three phases repeatedly, optimization is an ongoing
project.

Modern Cloud Cost Management Challenges

As cloud environments grow more complex with multicloud and hybrid infrastruc-
tures, traditional cost management approaches become inadequate. Modern strate-
gies are required to effectively navigate and control the increasing cloud spending in
these environments.

A 2023 study by 451 Research, commissioned by Oracle Cloud Infrastructure, found
that 98% of enterprises use or plan to use at least two cloud infrastructure providers.
In addition, 31% of enterprises are using four or more cloud infrastructure providers.
A multicloud or hybrid approach helps prevent single-vendor reliance and gives
companies the freedom to select best-in-breed services from various providers based
on their specific strengths.

A multicloud or hybrid approach also minimizes the impact of outages by distribut-
ing workloads across multiple clouds. This approach can also help companies comply
with data sovereignty laws that dictate data storage locations. In addition, the ability
to cherry-pick the most cost-effective services and pricing models from different
providers unlocks significant opportunities for optimizing cloud spending.

In addition to increasing operational complexity, managing cloud costs across multi-
cloud or hybrid environments brings distinct challenges. Each cloud provider has its
own billing system with different formats, metrics, and reporting tools. This makes it
difficult to get a consolidated view of spending across all platforms, particularly when
cost data is siloed within different departments or teams. In addition, cloud providers
have complex pricing models that can be difficult to compare across platforms. This
makes it challenging to allocate costs accurately to specific projects, departments, or
business units.

Al-Driven Cloud Cost Optimization Strategies

AT can help you take control of your cloud spending. The technology’s strength lies
in its ability to process the vast amounts of data generated, identifying patterns and
anomalies that would be nearly impossible for humans to detect. Applied to cloud
computing cost management, Al can not only give us insights into current spending,
but also predict future cloud usage with remarkable accuracy. Al algorithms, such
as long short-term memory (LSTM) and bidirectional LSTM networks and decision
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tree regression, can forecast compute needs weeks or even months in advance. In this
section, we'll look at practical strategies to reduce your cloud bill without impacting
performance, and we'll explore how Al can help you right-size resources, leverage
discounts, and automate cost controls, all while supporting your business goals.

Right-Sizing Cloud Resources

Right-sizing is at the dead center of responsible cloud cost management. This is the
practice of optimizing cloud resource allocation to match the actual needs of your
applications and workloads. Right-sizing is a critical strategy that involves ensuring
that you're neither underprovisioning (which can lead to performance issues) nor
overprovisioning (which can lead to unnecessary costs). Teams often start by deploy-
ing a service or application and allocating more resources than needed out of concern
for poor performance. Without accurate usage data, it can be difficult to estimate pre-
cise requirements. Misconfigured automated scaling can also contribute to excessive
resource allocation.

While compute resources (VMs and containers) are often the initial focus of right-
sizing efforts, they also apply to other cloud resources, including:

Storage
Right-sizing involves selecting the appropriate storage tiers and volumes based
on usage patterns. This covers block storage (like Amazon EBS or Google
Persistent Disk), file storage, and object storage (such as Amazon S3 or Google
Cloud Storage).

Databases
Right-sizing involves selecting the right database instance types, storage configu-
rations, and database performance and capacity to reduce costs.

Network
Right-sizing includes optimizing the use of network resources like load balancers,
VPN gateways, and bandwidth. Right-sizing can help minimize unnecessary
costs associated with overprovisioned network resources.

Cloud cost visibility required for the FinOps Inform phase

Effective optimization requires understanding both your resource utilization patterns
and the associated costs. This is where the FinOps Inform phase comes in. To gain
a precise understanding of cloud costs, engineers must have access to detailed cloud
analytics that highlight how resources—compute, storage, memory, and others—are
being used and how they map to actual spending.

This can be complex. Often costs are managed by finance teams, and engineers may
not even have access to financial data. If they do, they may have limited insight into
how their cloud resources actually translate into dollars and cents. The challenge
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lies in providing engineers with clear, concise, and actionable visibility into the
costs associated with the specific resources their applications are consuming. This
can be particularly difficult with complex, multiapplication, or multitenant cloud
environments, where costs can be distributed across many resources.

Modern cloud cost management tools, such as Harness CCM and various cloud
provider tools, help bridge this divide by offering self-service visibility to engineers,
enabling them to see the real costs of their applications, microservices, clusters,
and environments. These tools empower engineers by giving them the context they
need to manage cloud costs directly, without relying on finance or operations teams
to provide that information. Unlike traditional systems, which are limited to basic
infrastructure views, modern tools integrate with cloud services and provide detailed,
application-level cost data.

Moving from Inform to Optimize

Once you have a clear understanding of your cloud usage and costs, you are ready to
move on to the Optimize phase of FinOps. You can make data-driven decisions about
how to adjust your cloud resources to be more efficient and cost-effective. With the
visibility into costs and usage patterns, you can confidently make changes that align
with both performance and budgetary constraints.

Al-powered tools are becoming indispensable here, eliminating the need to manually
monitor and adjust resources to meet demand. With continuous monitoring and
features like idle resource detection and resource usage analysis, tools can help iden-
tify inefficiencies and recommend adjustments or automatically make adjustments to
CPU, memory, and storage configurations.

Optimization, however, should be approached gradually. Start with small, incremen-
tal changes, and continuously refine your strategy based on observed impacts. Al-
powered tools can help by predicting how to adjust resources by forecasting usage
into the future and using past small changes as feedback to make subsequent fine-
tuning actions. This iterative process is a key aspect of the Operate phase of FinOps.
By fine-tuning your cloud environment in this way, you can validate performance
requirements, ensuring that your application runs efficiently without sacrificing user
experience or application performance.

Leveraging Commitment-Based Pricing and Spot Instances

Leveraging commitment-based pricing models and spot instances are additional
strategies to reduce cloud costs.

Commitment-based pricing involves pledging a specific level of cloud resource usage
over a defined period in exchange for significant discounts. Offered by major cloud
providers like AWS, Microsoft Azure, and Google Cloud, these models—commonly
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referred to as Reserved Instances or Committed Use Contracts—can deliver savings
of up to 80%, compared with on-demand pricing. Longer commitments (typically
one to three years) and higher up-front payments yield the largest discounts.
AWS’s Reserved Instances, for example, offer discounts of 30% to 72% on compute
resources, while Google Cloud’s Committed Use Contracts provide similar savings
on compute, storage, and other services. These offerings are ideal for predictable
workloads, such as steady-state applications, but require accurate usage forecasting to
avoid over- or underprovisioning.

Spot instances, on the other hand, provide a dynamic way to cut costs by utilizing
unused cloud capacity at steep discounts—up to 90% less than on-demand prices.
These instances are ideal for noncritical, flexible workloads, such as batch processing,
data analysis, or development environments, as they can be interrupted with mini-
mal notice. By combining commitment-based pricing for stable workloads and spot
instances for flexible or transient tasks, businesses can achieve a powerful balance of
cost efficiency and operational flexibility. Advanced tools and AI-driven forecasting
can help organizations navigate these models effectively, ensuring optimal resource
allocation and maximum cost savings.

Key considerations

When leveraging commitment-based pricing models and spot instances to optimize
cloud costs, you need to consider their unique advantages and challenges to maxi-
mize their value while mitigating potential risks.

Commitment-based pricing models are ideal for predictable, steady workloads. How-
ever, they require accurate forecasting of resource usage over extended periods,
typically one to three years. Misjudging usage can lead to overcommitting, resulting
in underutilized resources and wasted costs, or undercommitting, which may lead
to higher on-demand charges. Flexibility is also limited, as these commitments lock
businesses into specific instance types, regions, or service tiers, depending on the
provider. To address these challenges, you must establish practices to:

o Analyze historical usage data to improve forecasting accuracy.

o Use convertible or flexible options, when available, to adjust commitments as
needs change.

 Regularly monitor and optimize resource usage to align with commitments.

The transient nature of spot instances, which can be terminated with little notice,
requires careful planning and workload adaptation. You must:
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« Ensure that workloads can tolerate interruptions without significant impact.

» Implement checkpointing or automated job recovery mechanisms to minimize
disruptions.

» Monitor market trends to predict spot instance availability and pricing fluctuations.

A hybrid strategy combining commitment-based pricing for steady workloads and
spot instances for flexible tasks can offer the best of both worlds: predictable cost
savings and dynamic scaling at low prices. To implement a hybrid strategy effectively,
your practices must:

o Evaluate workload characteristics to determine the appropriate mix of
commitment-based resources and spot capacity.

o Leverage automation tools, such as cloud-native autoscaling and workload
orchestration systems, to optimize usage.

+ Continuously assess and refine the strategy to adapt to changing business needs
and workload patterns.

How Al can help

Clearly, optimizing between commitment-based pricing models and spot instances
quickly gets complex. Modern Al tools, including GenAl, can help overcome these
challenges with accurate forecasting, dynamic optimization, and seamless automation.

For commitment-based pricing, Al agents, such as the Harness FinOps Agent, can
analyze historical usage patterns and predict future resource needs with precision,
reducing the risks of over- or undercommitting. Al tools can also identify the
ideal mix of reserved and on-demand resources while continuously monitoring and
adjusting commitments to align with changing workloads. Additionally, AI systems
can detect anomalies in resource consumption, ensuring businesses avoid inefficien-
cies or penalties.

For spot instance optimization, Al can address their unpredictability by forecasting
availability and pricing trends, enabling smarter scheduling for interruption-tolerant
workloads. Al-powered workload orchestration tools automate the deployment and
scaling of tasks, dynamically shifting them to alternative resources when spot instan-
ces are interrupted. Moreover, Al optimizes checkpointing and recovery processes,
ensuring workloads can resume efficiently while minimizing downtime. This is par-
ticularly valuable for tasks like batch processing or data analytics.

By integrating both models, AI can create an intelligent hybrid strategy that balances
the cost efficiency of reserved resources with the flexibility and low pricing of spot
instances. It ensures optimal resource allocation based on workload requirements,
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predicts demand surges to adjust resources proactively, and provides actionable
insights for continuous cost optimization.

Using Al to Manage Container Costs

Containerized architectures play an important role in modern application devel-
opment. Containers package applications and their dependencies into lightweight,
portable units, enabling them to run consistently across different environments.
These containers operate on nodes, which are physical or virtual machines (often
referred to as instances) that provide the underlying resources. Multiple nodes com-
bine to form a cluster, a coordinated group of machines that work together to run and
manage containers. Within a node, containers are typically grouped into pods, which
share resources and are deployed together as a single operational unit. The manage-
ment of these clusters is handled through orchestration, where tools like Kubernetes
automate the deployment, scaling, and lifecycle management of containers.

While containerized architectures offer unmatched portability, resource efficiency,
and adaptability across diverse environments, managing cloud costs for containerized
environments is different from managing costs in VM environments. The shared
underlying infrastructure complicates cost tracking. In VM environments, each vir-
tual machine is a stand-alone unit with fixed resources, so costs are easier to allocate.
However, when multiple containers run on a single server instance, your cloud bill
will provide only the usage of the underlying server, not individual containers. This
makes it difficult to accurately understand the usage costs between the containers, as
you need more detailed information about how resources like CPU and memory are
being shared. The lack of visibility presents challenges in cost attribution, making it
harder to track and manage expenses at the container level.

Containerization does not eliminate the need for FinOps; the same principles of
financial accountability and cost optimization remain crucial for containerized appli-
cations. Unless you rely on cloud-managed container platforms, you must gather
supplemental data about how server resources are utilized by running containers.
This includes tracking the proportions of CPU, memory, and storage that each
container consumes on shared server instances. Pairing this granular resource usage
data with your cloud billing information enables accurate cost allocation, ensuring
teams and applications are held accountable for their resource consumption. Without
this level of insight, it becomes challenging to manage and optimize costs effectively
in a containerized environment.

Al again can play an important role. One of the key ways Al helps is through
intelligent resource allocation: it analyzes historical usage patterns and workloads to
predict resource requirements for containers, suggesting optimal configurations for
pods, scaling policies, and node sizes. This reduces overprovisioning, so containers
have just the resources they need without wasting capacity. Additionally, AI enables
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dynamic workload scaling, automatically scaling down workloads during periods of
low usage, which complements the Kubernetes autoscaling functionality to maximize
cost savings.

AT also improves cost control through forecasting and alerts. By analyzing historical
usage and identifying trends, AI models can predict future Kubernetes-related costs,
providing accurate projections that help teams plan budgets effectively. Alerts can
notify stakeholders of potential budget overruns, enabling corrective action before
costs spiral out of control. Moreover, Al can intelligently schedule workloads across
clusters, nodes, or even regions to minimize cloud spend while maintaining perfor-
mance, compliance, and reliability.

Aligning Cost Savings Goals with Business Objectives

While AI can make it easier to find cost savings, keep in mind the FinOps principle
that decisions are driven by the business value of the cloud. Its critical that we
weigh cloud cost savings against our business requirements for quality, speed, and
innovation.

Consider a large retail company preparing to launch a new platform before a peak
sales season. Its primary goal is to ensure a smooth and successful launch, even if it
means higher initial cloud costs. The increased revenue of an on-time and flawless
launch, providing an excellent customer experience, may outweigh the immediate
need to minimize cloud costs. The retailer might accept higher initial expenses to
ensure a successful launch, knowing that it can optimize cloud usage and reduce costs
in the long run.

While cost savings are a crucial consideration, remember, it’s equally important to
invest strategically to maximize business benefits. Factors such as enabling rapid
scaling to accelerate growth, increase revenue, speed up delivery times, improve
customer satisfaction, and reduce labor costs should all be considered along with the
expenditure.

Automating Cloud Governance and Compliance

So far, we've explored the core principles of FinOps and looked at tactical approaches
for optimizing your cloud resources, from right-sizing and leveraging discounts to
managing containerized environments. But how do you ensure these practices are
consistently applied and aligned with your organization’s broader goals? That’s where
cloud cost governance comes in. Cloud governance frameworks are sets of policies,
procedures, and best practices that define how an organization uses and manages its
cloud resources. Think of these as a blueprint for secure and efficient cloud adoption
and cost management. In this section, we will examine how a robust governance
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framework ties together the various aspects of cloud financial management. Lastly,
we'll look at the role automation and Al can play in enforcing governance policies.

Implementing Cloud Governance Policies

Setting clear goals for your cloud strategy is the first step to creating a solid cloud cost
governance framework. This helps ensure your cloud operations align with business
priorities like managing costs, driving innovation, and supporting growth. Specific
success metrics tied to your strategy could include reducing cloud waste by 20%,
achieving 95% tagging compliance, or limiting monthly cost variances to 5%.

An effective governance policy should cover areas including:

Cost visibility
This encompasses considerations such as your resource tagging policy, which we
will look at in detail in the next section. Cost visibility policy can also include
configuration of alerts for unexpected cost spikes, using tools such as Google
Cloud Billing or custom scripts integrated with Slack or email notifications.

Budgeting and forecasting
A policy should set team-specific budgets with a buffer for unforeseen growth.

Optimization processes
A policy should include optimization practices such as regularly analyzing
resource usage and adjusting instance sizes to better match workloads, pre-
purchase of reserved or savings plans for predictable workloads, and use of spot
instances for fault-tolerant workloads to reduce compute expenses.

Security and compliance
Lastly, a policy should implement RBAC to limit resource access based on user
roles. Automate checks to ensure compliance with regulations like GDPR or
HIPAA using tools like Prisma Cloud or AWS Security Hub.

Al and automation make it easier to enforce policies automatically, reducing the
chance of mistakes or oversights. For example, AI-powered tools can add or check
tags on resources and send real-time alerts if policies aren’t followed. These tools can
also help in analyzing the infrastructure and suggesting policies that can be set up
to improve the overall cost, security, and compliance posture. Additionally, they help
avoid unexpected cost spikes by flagging unusual activity and ensuring that systems
remain compliant without constant manual checks.

Automation also simplifies processes that are prone to human error, like setting up
access controls or allocating resources. By automating these tasks, you can reduce
the risk of security issues and improve how smoothly your cloud environment
runs. Combining automation with clear policies ensures that cloud usage stays cost-
efficient, secure, and aligned with the organization’s goals.
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Enforcing Budget Guardrails with Automation

Automation is essential in enforcing budget guardrails, especially in environments
with dynamic resource allocation. Budget overruns are often caused by the uncon-
trolled proliferation of resources, unexpected usage spikes, or failure to monitor costs
in real time. Mechanisms to monitor, alert, and act when spending thresholds are
approached can automatically enforce policies such as shutting down underutilized
resources, scaling down instances, or restricting new resource provisioning once
spending nears predefined limits. This ensures that costs remain within financial
goals without relying solely on manual interventions, which are prone to delays and
errors.

AT can take this even further by predicting when costs might go over budget before
it happens. The technology can forecast when spending will exceed the budget and
take automatic steps to prevent it. For example, an Al system might see that a
certain projects cloud resource usage is growing quickly and predict that it will go
over the budget by the end of the month. The system can then act, perhaps by
adjusting resources to cheaper options or notifying the team to make adjustments.
For instance, during a big sales event, Al could ensure that the needed resources
are in place without letting the costs spiral, automatically balancing cost and perfor-
mance. Al tools can potentially correlate external business metrics like sales data,
headcount, and industry market movements and factor them into the forecasting
engine alongside historical usage patterns and correlations to these external factors.

Ensuring Tag Compliance Through Automation

Cost allocation is fundamental to cloud cost management, as it provides transparency
into how cloud resources are being consumed and by whom. Accurately attributing
costs to specific teams, projects, or applications creates accountability and encourages
responsible cloud usage. This transparency ensures that every team is part of cost
optimization efforts.

Tagging is key to cost allocation. Tags are metadata labels attached to cloud resources,
providing information about their purpose and ownership. You might, for example,
use an Environment tag set to Production, Development, or Testing to differentiate
resource usage by stage. You might use a Cost Center tag to link resources to business
units or budgets. Cloud accounts are another tool for cost allocation. By creating a
tiered system of accounts—typically with a root account overseeing child accounts
for different environments, teams, or projects—you can centralize billing and gover-
nance while maintaining individual account flexibility. Tags combined with cloud
account hierarchies enable accurate tracking and allocation of costs. For instance,
tagging a VM with relevant details allows for easy filtering and analysis of cloud bills
to understand spending patterns by project, department, or application.
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An effective tagging strategy should be comprehensive and easily understood across
the organization. The strategy should define the key information to track, such
as project names, departments, and application names, and use clear, concise, and
consistent tag names.

The right tooling is required to ensure the consistent use of the tags you require.
Manual tagging can fall short, especially across complex multicloud environments.
Human error can lead to inconsistencies, missing tags, or incorrect values, hindering
cost allocation and resource tracking. Automation here can enforce tagging policies
and validate tag values across all cloud platforms.

Automated tools can also audit tags regularly to identify and fix or report noncompli-
ant resources, ensuring uniformity and accuracy across your entire cloud estate. This
not only saves time and reduces errors but also strengthens your cloud governance
and cost optimization efforts. Al can also help in normalizing multiple tag variations
that are similar into a consolidated tag variation, reducing noise.

Allocating the Costs of Shared Platforms and Services

Another challenge to cost allocation is the use of shared platforms and services, a
common feature of modern cloud architectures. When infrastructure or resources
are shared across teams and applications, it becomes more complex to divide costs
accurately. Modern, Al-powered tools excel at attributing costs based on resource
usage patterns and dependencies.

Cloud Cost Management to Meet
Environmental Sustainability Goals

As organizations migrate to the cloud, aligning cost management strategies with
sustainability goals can help you both reduce operational expenses and decrease
your environmental impact. Beyond the typical focus on just saving money, a green
approach to cloud cost management also involves actively choosing eco-friendly
options and tracking your environmental footprint. The following practices illustrate
how to achieve these dual benefits:

Right-sizing and optimizing cloud resources

Continuously monitor cloud usage to identify and eliminate underutilized or idle
resources. Right-sizing ensures that only necessary resources are provisioned,
which reduces both costs and energy consumption. Implement autoscaling
mechanisms to adjust resource allocation based on real-time demand, prevent-
ing overprovisioning and unnecessary energy use. You can also implement
auto-stopping to turn off resources that are not being used, thus achieving a
zero-carbon footprint for them.
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Leverage renewable energy and green cloud providers
Choose cloud service providers that operate data centers powered by renewa-
ble energy. For example, Google Cloud Platform has some regions that use
100% renewable energy, enabling organizations to reduce their carbon footprint
through eco-friendly infrastructure choices. You should also prioritize providers
and regions with lower carbon intensity.

Implement cost allocation and accountability
Allocate cloud costs to each department, project, or team to increase visibility
and encourage responsible resource usage. This not only optimizes spending but
also promotes accountability for sustainability efforts. Use tagging, standardized
workflows, and automated governance policies to ensure resources are used
efficiently and in compliance with sustainability objectives.

Adopt energy-efficient workload scheduling
Schedule nonurgent or batch workloads to run during off-peak hours or in
regions with lower energy costs and carbon intensity, further reducing both
spend and emissions. Utilize Al-driven tools to analyze usage patterns and
recommend optimal workload placement for both cost and environmental
efficiency.

Integrate sustainability metrics into cloud strategy
Build “green teams” responsible for setting and tracking sustainability goals such
as greenhouse gas emissions, energy consumption, and water use. You can also
incorporate sustainability KPIs into cloud management dashboards (such as the
ones provided by AWS) and gamify sustainability efforts to motivate teams to
find innovative ways to reduce both costs and environmental impact.

Track carbon footprint

Use cloud management platforms that offer carbon tracking features to measure
the environmental impact of cloud usage and generate carbon offsets. Tools like
Cloud Carbon Footprint and Harness Cloud Cost Management provide organi-
zations with best-case estimates to measure, monitor, and reduce cloud spending
and associated carbon emissions. You can also reinvent savings from cloud cost
optimization as investments in carbon credits or other eco-friendly initiatives,
turning financial efficiency into measurable climate action.

By combining these strategies, organizations can correlate cost savings directly with
sustainability goals. This approach not only enhances operational and financial per-
formance but also demonstrates a clear commitment to environmental stewardship
in the digital era.
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The Future of Al in Cloud Cost Management

Cloud cost management tools are rapidly evolving to leverage Al insights to simplify
the work of optimizing cloud usage. We see a future in which AI powers cloud cost
management with innovative new functionality.

As an example, natural language interfaces and conversational AI hold promise
for making cloud cost management even more accessible. Emerging interfaces will
enable users to interact with complex systems in simple, conversational ways. Instead
of navigating dashboards or interpreting detailed reports, users can ask questions
like, “Whats driving my cloud spend this month?” or “Which services are over
budget?” and receive clear, actionable answers. This reduces the technical barrier for
nontechnical stakeholders and empowers teams across the organization to engage
with cloud cost data. For example, a FinOps practitioner might use a conversational
AT tool integrated into Slack or Microsoft Teams to request, “Show me the top five
projects exceeding their budgets,” and instantly receive a list along with recommenda-
tions for optimization.

We also see a growing role for Al in balancing cost savings while minimizing the
environmental impact of cloud usage. Optimizing workloads, right-sizing resources,
and using energy-efficient cloud regions can often achieve both goals, though sus-
tainability efforts may sometimes require up-front investments. AWS, Google Cloud,
and Azure already offer tools such as the Customer Carbon Footprint Tool, Carbon
Sense Suite, and Sustainability Calculator to gain insights into the carbon impact of
cloud usage.

These are just a few examples of the features AI will bring to helping us manage our
cloud usage. Cloud services are both powerful and complex. Using Al and modern
tools, now and in the future, will help you optimize resource allocation, leverage
cost-effective pricing models, and achieve greater financial control and sustainability
in the cloud.

Summary

Managing cloud costs has become an increasingly complex and pressing issue for
organizations as cloud expenditures surge across industries. The shift from tradi-
tional on-premises infrastructure to cloud-based environments has brought greater
agility and scalability, but it has also introduced new layers of cost unpredictability
and operational complexity. In response, the FinOps discipline has emerged, empha-
sizing cross-functional collaboration, shared accountability, and the use of real-time
data to optimize cloud spending and maximize business value.
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Modern strategies leverage AI and automation to address issues like resource over-
provisioning, multicloud complexity, and cost allocation, enabling practices such as
right-sizing, leveraging commitment-based pricing and spot instances, and managing
containerized environments efficiently. AI-powered tools improve visibility, forecast-
ing, and enforcement of governance policies. They automate tasks such as tagging,
anomaly detection, and budget guardrails to ensure cost control, compliance, and
alignment with business and sustainability objectives. Integrating AI and automa-
tion into cloud cost management ultimately empowers organizations to optimize
spending, improve operational efficiency, and support environmental sustainability
initiatives.
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CHAPTER 10

A Platform Engineering Approach
to Modern DevOps

The previous chapters have painted a picture of the many systems and practices that
characterize modern software delivery. This long journey has illustrated the daunting
complexity that modern software teams must contend with. In addition, modern soft-
ware development has tended to “shift left” many concerns—security, observability,
and infrastructure management work—that were previously handled by operations
teams. If even the most experienced and well-resourced development teams are
strained by this complexity and added responsibility, how are we to manage?

Platform engineering has emerged to help modern software organizations answer this
very question. It is the discipline of designing, building, and maintaining internal
developer platforms that provide integrated tooling and infrastructure for software
delivery. While previous chapters explored the individual components of modern
software delivery, welll see in this chapter how platform engineering pulls these
capabilities together into a cohesive platform that serves development teams.

In this chapter, we'll explore how organizations can build and run effective platform
engineering teams. We'll look at how these teams fit into organizations and what role
they play in enabling rapid, secure delivery. Then we'll dig into the practical aspects
of building and operating high-performing platform teams—everything from team
structure to day-to-day operations. We'll explore concrete ways to measure developer
platform effectiveness, ensuring our investments deliver real value. We'll discuss the
balance between standardization and team autonomy—how to provide guardrails
without stifling innovation. Finally, we’ll look at strategies for sustainable platform
evolution, ensuring our platform grows alongside our organization’s needs.
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Why Platform Engineering?

We understand that traditional approaches to developer tooling often require devel-
opment teams to navigate a complex landscape of tools and practices on their own.
Platform engineering treats internal developer platforms as a strategic product, with
development teams as valued customers. This shift comes at a critical time, as the
rapid evolution of software practices has created a cognitive load crisis for developers,
who must juggle an expanding set of responsibilities. Platform engineering addresses
this crisis, and we'll dig into the business case for it and how it reinforces a collabora-
tive DevOps culture.

The Developer Cognitive Load Crisis

Each new tool that we add to our toolchain and each new practice we add to our
delivery process promises to accelerate delivery or to improve software quality. The
cumulative effect, however, can create an unsustainable cognitive burden on our
development teams. Consider that developers must juggle SCM, CI/CD pipeline con-
figuration, IaC templates, security scanning tools, deployment strategies, monitoring
systems, and a host of other specialized tools. Each comes with its own complexities,
best practices, and failure modes.

This cognitive burden is particularly acute as teams adopt Al-powered tools across
the development lifecycle. While these tools promise to accelerate delivery, they
often require significant expertise to implement effectively. Platform engineering can
encapsulate this complexity, making Al capabilities accessible through standardized
interfaces and templates, without requiring every developer to become an AI expert.

The data tells a concerning story: a recent Harness survey of engineering leaders
found that 78% of developers spend at least 30% of their time on manual, repetitive
tasks rather than writing code. Hours get consumed by operational responsibilities
and tool management—activities that, while necessary, pull developers away from
their most valuable work: creating innovative solutions to business problems. As
concerning as the lost time itself is the fragmentation of focus that creates a cognitive
burden that directly impacts delivery quality and speed. Legacy processes often com-
pound the challenge, generating low-value work that prevents deep, creative thinking.

The cost of context switching is taxing. When developers constantly pivot between
writing application logic, debugging pipelines, investigating security alerts, and
troubleshooting production issues, each transition extracts a mental cost. This cost
doesn’t just slow feature delivery—it fundamentally undermines the conditions that
enable developer excellence. Deep, uninterrupted focus time drives software quality
and innovation. When developers constantly jump between coding and operational
tasks, both technical excellence and creative problem-solving suffer, leading to accu-
mulated technical debt.
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This issue impacts more than productivity metrics—it directly affects morale, reten-
tion, and the ability to attract top talent. The best engineering organizations under-
stand that a great developer experience—where engineers can spend more time
solving problems and less time wrestling with inefficiencies—not only leads to better
software but also fosters a culture where top talent thrives and sticks around. A suc-
cessful platform will address these sources of dissatisfaction, and developers will flock
to it. If most developers must be forced to use a platform, there’s likely something
wrong with the platform or its rollout.

From Toolchains to Platform as a Product

Platform engineers address developer experience directly by creating an environment
where developers can be maximally productive. This means designing, building, and
maintaining the underlying developer platforms that enable the smooth development,
deployment, and operation of applications and services.

Developer platforms typically address a number of areas, as shown in Figure 10-1.
This includes a portal, CI/CD pipelines, and IaC. Automated measures to ensure
security, compliance, and cloud cost compliance are woven throughout.
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Figure 10-1. Developer platform capabilities

Developer platforms can be built in several ways: platform teams may assemble them
from various tools, organizations can purchase prepackaged solutions from vendors
like GitLab or Harness, or they can use orchestration tools like Humanitec to create
a unified layer over existing toolsets. In practice, most implementations combine
these approaches rather than following a single clean strategy. Teams usually pick
a strategy and make some accommodations for things that are important to the
organization but don't quite fit into the strategy. Being practical problem-solvers,
engineers often blend strategies, adapting their chosen approach to accommodate
crucial organizational needs, and ultimately they make it work.
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Platforms present paved roads—proven patterns and practices that development
teams can follow with confidence. Paved roads often take the form of application
or infrastructure templates. Consider a standard web application template. Starting
from scratch, developers might require several days to manually string together
foundational capabilities and set up deployment—tedious and redundant work. A
platform-provided template comes preconfigured with essential frameworks already
in place. This includes standardized approaches for metrics collection, fault tolerance
patterns, security configurations with sensible defaults, and structured logging with
request tracing—all integrated within a cohesive framework. Templates can extend
beyond application code to include infrastructure definitions and deployment pipe-
line configurations, forming a comprehensive application foundation.

In addition, platforms often offer templates that, at the application level, standardize
approaches and encapsulate organizational best practices for cross-cutting concerns
like authentication, logging, and error handling. The operational layer includes
deployment pipelines that incorporate security scanning, load testing, and automa-
ted rollback procedures. The infrastructure layer leverages automation to provision
resources with appropriate security groups, monitoring configurations, and disaster
recovery procedures.

These capabilities are exposed through self-service portals or interfaces that abstract
underlying complexity while maintaining security and compliance guardrails. For
instance, a platform might provide an API for provisioning databases that automat-
ically configures backup schedules, encryption, and access controls according to
organizational standards.

The benefit is clear: rather than leaving teams to piece together tools, templates
automate this tedious setup and configuration work while embedding best practices,
security, and compliance standards. This makes developers more productive—with
templated code in place, they can immediately focus on building features. Moreover,
when they go to work on another project, whether because they've changed teams
or because they need to update a dependency, they will be more comfortable and pro-
ductive due to the familiar environment. Meanwhile, this added consistency reduces
risk as it is easier to manage risks across a handful of standard tools and templates
than a constellation of unique snowflakes scattered across the organization.

Its important to note that the specific templates and automations provided by a
platform team will vary significantly from organization to organization. There’s no
one-size-fits-all approach. A platform team’s focus must be laser-sharp on addressing
the unique needs and use cases of its internal development teams. What works for
a large financial institution with stringent compliance requirements will likely look
very different from the platform built for a fast-moving startup. The key is for the
platform team to deeply understand its “customers”—the development teams—and
tailor its offerings to their specific pain points and workflows. Later in this chapter,
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we dig into the product mindset that platform engineering requires to ensure that the
team is a true, developer experience-focused service provider to development teams.

The Business Case for Platform Engineering

The business case for platform engineering rests on a simple premise: by streamlin-
ing software development and operations, we can realize developer and operations
productivity gains that make our teams more efficient and reduce the costs associated
with risk. Consider the cost of developer time. If most developers spend roughly 30%
of their time on repetitive, non-value-added tasks, for an organization with just 250
developers, this translates to substantial recoverable costs. Across companies we sur-
veyed, developers earned an average of $107,599 annually, amounting to over $32,000
per developer in lost productivity annually. For organizations with 250 developers,
this represents an $8 million hidden cost in lost development time.

Platform engineering provides developer platforms that automate many of these
repetitive tasks, recovering lost time. Platform standardization and centralized plat-
form development eliminate efforts duplicated across teams. This enables operations
teams to support a larger application portfolio with existing headcount while main-
taining consistent security and compliance standards.

The return on investment (ROI) of platform engineering extends beyond developer
productivity. It addresses the business risks that keep teams up at night. Developer
platform paved roads reduce the risk and potential cost of security breaches by
eliminating security gaps that arise from inconsistent implementations across teams.
With standardized deployment processes and monitoring practices, platform teams
can reduce both the frequency and the impact of service outages. By embedding
proven patterns for high availability and disaster recovery into platform components,
organizations maintain business continuity even during incidents. Meanwhile, built-
in compliance controls and automated audit trails help organizations avoid costly
regulatory violations.

Platform engineering can also act as a powerful accelerator for broader organizational
initiatives, such as cloud migrations or application modernization. By providing
a standardized and automated foundation, platform engineering creates repeatable
pathways that accelerate timelines while reducing risk.

Supporting a Collaborative DevOps Culture

Platform engineering supports collaboration between development, operations, and
security teams, a theme we've returned to throughout previous chapters. A unified,
self-service platform acts as a collaborative bridge. Instead of siloed responsibilities
and potential friction points, platforms bring a more integrated ecosystem where
operations and security requirements are addressed directly and automatically in
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platform paved roads. These paved roads give developers preapproved, secure pat-
terns and automated workflows that inherently incorporate security best practices.

This is particularly powerful in regulated environments: instead of implementing new
regulations for each application team, with the high probability that it won't be done
consistently, the platform team can implement those rules once, at the platform level,
ensuring compliance for everyone. Developers can focus on creating business value
while automatically adhering to operational and security standards through platform
guardrails. The net result is a more streamlined, secure software delivery pipeline.

Creating and Operating Platform Teams

Now that we understand the value of platform engineering (the “why”), we turn
to implementation (the “how”). In this section, we’ll examine how to establish and
operate effective platform engineering teams. We'll look at the key characteristics
of successful teams, discuss engagement models that keep platform teams closely
aligned with development needs, and review operating models that support a scal-
able, high-performance platform engineering function.

Critical Characteristics of a Platform Team

The most successful platform engineering teams bring more than deep technical
expertise—they bring product insight and customer empathy. Starting with platform
leadership: leaders need the technical depth to understand the challenges developers
face across the organization, while also possessing the strategic vision to align the
platform with business goals. They must maintain credibility with both engineers and
business stakeholders, bridging the gap between the technical and the strategic. Ideal
leaders have a strong background in these three domains—development, operations,
and security. This focus will help guide the team and organization in the right
direction.

The platform team itself should be a microcosm of your development organiza-
tion, encompassing expertise in development, security, and operations. This cross-
functional knowledge allows the team to create integrated solutions that address
the full spectrum of developer needs. The team should include engineers with experi-
ence in key bottleneck areas like security and compliance, in addition to engineers
versed in development, enterprise architecture, and existing tools. As Al becomes a
fundamental part of software delivery, platform teams benefit from including at least
one member with expertise in AI/ML operations. This role bridges the gap between
data science and software delivery, helping the team effectively integrate and manage
Al-powered tools within the platform. They ensure AI components remain reliable,
explainable, and aligned with organizational governance requirements.
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Remember, the platform is a product, and developers are its customers. To ensure
the platform evolves based on developer needs rather than platform team preferences
alone, the team needs strong product management capabilities. This includes skills in
user research, road map development, and adoption measurement. By understanding
developer needs and measuring platform effectiveness, the team can ensure the
platform remains a valuable asset for the entire organization.

Engagement Models That Work

One of the first considerations when starting a platform practice is determining
how the team will engage with the larger organization. A successful platform team
requires an engagement model that provides a deep understanding of developer
needs and promotes effective collaboration across the organization. Platform teams
must also engage with their customers—the development teams—in a thoughtful and
structured manner.

An “immersion program” is an example of an engagement model that works well in
some organizations. With this model, platform engineers temporarily embed them-
selves within individual development teams. The hands-on approach gives the teams
insights into the daily challenges faced by developers; it fosters empathy and creates
a deeper understanding of their needs. By working side-by-side with developers, plat-
form engineers can identify pain points, bottlenecks, and opportunities for improve-
ment. This ensures that the platform evolves in tandem with the unique needs of
specific teams while still maintaining a central governance structure. This model can
work particularly well when you are just getting started with platform engineering, as
it helps form a deep understanding of team challenges and constraints.

Another option is to establish a Center of Excellence. This type of platform team
operates as a distinct, cross-functional group serving all development teams. They
provide feedback on platform features, advocate for adoption, and assist with the
integration of platform capabilities into development workflows. Collaboration across
the organization ensures that the platform remains aligned with the evolving needs
of the development community. This model works well for larger organizations with
diverse projects, as it provides clear ownership and centralized best practices while
reducing the duplication of effort.

Alternatively, hybrid models, where platform engineers serve both as centralized
experts and as embedded resources, offer the best of both worlds—consistency
in tooling and processes coupled with intimate knowledge of specific product
challenges.

Choosing the right model depends on your organization’s size, complexity, and stra-
tegic priorities. The stage of your platform maturity can also be a factor. As the
platform matures and the user base grows, the engagement model needs to scale.
While high-touch support might be feasible for early adopters, a more scalable
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approach is necessary for widespread adoption. Self-service onboarding, enabled by
comprehensive documentation and intuitive tools, allows teams to integrate with the
platform seamlessly and autonomously.

Lastly, while each of these models provides a structural foundation for platform
success, they must be reinforced by robust mechanisms to measure and validate
platform effectiveness. Later in this chapter we’ll look at ensuring that systematic
feedback loops are in place to measure developer satisfaction and platform adoption.

Effective Operating Models

While the engagement model guides how the platform team interacts with devel-
opment teams, the operating model defines the platform team’s internal processes
and principles. The operating model is crucial for serving development teams while
maintaining high operational standards. It dictates how the team functions, allocates
resources, and interacts with the broader organization. An effective model strikes a
balance between empowerment and control.

A strong operating model prioritizes self-service capabilities that empower develop-
ment teams to move quickly and independently. The platform team maintains appro-
priate guardrails through automation and template offerings that encapsulate best
practices for the organization.

Clear, up-to-date, and readily accessible documentation is another feature of an
effective operating model. Documentation should empower developers to understand
and adopt platform capabilities without requiring hand-holding from the platform
team.

Finally, your operating model should be structured to handle both tactical and strate-
gic needs—implementing SLAs for critical issues while protecting dedicated time for
platform improvements and addressing developer feedback. Techniques like support
rotations and engineering sprints can help teams manage this balance.

Defining Your Platform Strategy

A coherent platform strategy is squarely focused on your developer needs. It takes
into account the constraints of your organization and the objectives most important
to your business. In this section we'll discuss how your strategy should clearly artic-
ulate a set of principles that will guide decision making. We'll explore how a deep
understanding of your platform customers should drive the initial scope. Lastly, we'll
discuss the challenges you may encounter in balancing standardization through the
platform with flexibility in allowing teams to diverge when needed.
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Setting Platform Principles

Platform strategy starts with clear principles that articulate how your platform team
will approach solutions. When the team is getting pulled in many different directions
and is asked to address a growing set of concerns, clear principles act as a compass.
They guide decision making and provide a framework for evaluating trade-offs,
resolving conflicts, and maintaining focus amid the complexities of platform develop-
ment. Once you have defined your principles, it’s important to share them through-
out your organization to get the alignment that will help the team be successful.

The following principles are ones that should underpin any platform strategy:

Developer experience and effectiveness is the primary driver of platform design.
Every capability should aim to reduce cognitive load and streamline development
workflows, rather than adding complexity.

Security and compliance requirements are embedded seamlessly into the platform.
This makes it easier for developers to “do things right” than to bypass controls.
The approach fosters a secure development environment without hindering
productivity.

Platform evolution is driven by measurable developer needs and demonstrable business
outcomes.
Platform evolution is not driven only by the technical preferences of the platform
team or the strong opinions of any given developer team. The platform team will
solicit feedback from developers, track platform usage, and measure the impact
on key metrics like deployment frequency and lead time.

A key strategic decision is whether adoption should be mandatory or optional.
Mandatory platforms can drive consistency and standardization, but risk reducing
the incentive to deliver a great developer experience. Optional adoption, on the
other hand, forces the platform team to earn trust and prove value, leading to more
user-focused, innovative solutions. While this approach can create fragmentation,
it fosters excellence in practice, not just in theory. Some organizations begin with
optional adoption and introduce mandates later to consolidate gains and bring late
adopters on board.

Platform Antiprinciples and Resolving Conflicts

Just as important as what your platform strategy should embrace is what it should
avoid. Common antiprinciples that undermine platform success include:

Perfectionism over progress
Delaying platform releases until they’re “perfect” often means developers create
their own solutions in the meantime, making eventual adoption harder.
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Technology-driven development
Building platform capabilities because theyre technically interesting or cool
rather than because they solve real developer problems.

Mandatory adoption without demonstrating value
Forcing teams to use the platform before proving its value creates resistance and
potentially damages the platform’s reputation long term.

When principles come into tension with each other, as they inevitably will, having
a clear prioritization framework helps. For example, when security requirements
conflict with developer experience, most organizations need a structured approach to
resolve this tension. Successful platform teams typically prioritize:

1. Security and compliance requirements that carry regulatory risk
2. Developer experience for high-frequency activities
3. Standardization for operational consistency

4. Innovation and flexibility

This hierarchy helps teams make consistent decisions when principles compete.
When facing such conflicts, platform teams should document the tension, the
decision-making process, and the eventual resolution to create precedent for future
decisions.

Allowing a model like this to support a choice that results in poor developer experi-
ence in the name of security is dangerous. You have planted a seed for circumventing
or manipulating the platform. Treating such a decision as a necessary stopgap, and
then working to develop a more efficient and pleasant way of satisfying the gover-
nance control, is a key to long-term success.

Understanding Your Platform Audience

Going back to our first principle: developer experience and effectiveness is the pri-
mary driver of platform design. A successful platform strategy starts with a deep
understanding of your development teams needs and the broader organizational
context. The immersion engagement model can help here. With this model platform
engineers embed in individual application teams for a time period. By sitting next to
application developers and learning about their work through close observation and
asking questions, platform team members are better able to identify common friction
points, bottlenecks, and opportunities for improvement. Consider both immediate
pain points hindering developer productivity and long-term strategic objectives.
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Selecting Platform Scope

Once you've started to develop a clear picture of your platform audience, the next
step is to define the initial scope of your platform capabilities. The most effective
approach is to start small by focusing on foundational elements that immediately
unlock developer productivity. Streamlined infrastructure provisioning, automated
delivery pipelines, and integrated security automation are good examples. As your
platform matures and the organization’s needs evolve, you can incrementally expand
into more advanced areas, like creating a comprehensive developer portal or intro-
ducing self-service analytics tools. The key is to resist the temptation to solve every
problem at once—successful platforms grow steadily, guided by demonstrated value
and continuous feedback from the teams they serve.

A Practical Road Map Example

Let’s walk through a practical example of using an understanding of our audience
to select initial scope. A useful approach is to zero in on the teams and use cases
that are already driving rapid innovation. For example, teams that are adopting new
technologies or making the leap to cloud platforms often face acute challenges that
even a simple platform can help quickly resolve.

In our example, we decide to focus our efforts to support an applications team
transitioning to microservices on AWS and Kubernetes. This team is struggling with
standardized infrastructure and deployment patterns. By addressing this specific
need, we can demonstrate the platform’s value and gain traction within our organiza-
tion. In identifying our earlier adopter team, we are careful to select a team that is
enthusiastic about actively collaborating in refining the platform offering and willing
to provide frequent feedback.

In this case, we start by creating a paved road that streamlines common tasks. We
automate the creation of a new microservice from repository creation through CI/CD
pipeline configuration and infrastructure provisioning. Out of the gate, this doesn't
need to encompass every tool in the pipeline. We focus on including only the core
build, deploy, and governance layers, and we embed organizational standards directly
into our template. In accordance with our second principle, security requirements,
compliance controls, and operational best practices are baked in. We partner closely
with compliance and security teams to ensure our automated patterns meet their
requirements. The goal is that by using our platform, application teams default to
doing the right thing.

Another suggestion for an easy win is to consider offering application teams audit
help as a service as part of your platform. Build in functionality that automates
answering certain audit questions on their behalf. Because you're building the system
with internal audit in mind, this will be easy to provide and will help drive adoption
and delight your users.
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Balancing Standardization and Flexibility

In establishing a platform engineering practice, you may find challenges in standard-
izing software delivery with your platform paths and giving the teams the flexibility
they need (or just want). Consistent software delivery, through standardized platform
paths, is what ensures the platform’s reliability, operational efficiency, and ultimately
its business value. However, your platform should allow some team autonomy; teams
should be able to innovate to come up with the most appropriate and efficient
solutions for their specific needs. An overly opinionated template with very rigid
paths will only deter adoption of your platform.

One way to approach this challenge is to consider the components of your template
in these three categories:

Mandatory components
This set of components addresses functions like logging configuration, moni-
toring setup, and security controls. These are mission-critical concerns (secu-
rity, observability, compliance) and are strictly standardized. Their inclusion is
enforced.

Configurable components
These components include resource scaling configuration, cache settings, and
database connections. Teams should be able to configure as needed without
impacting overall objectives of standardization.

Extension points
Finally, extension points should be used to allow teams to customize aspects such
as health checks, configure specialized middleware, and define team-specific
metrics. Well-documented APIs provide these extension points, defining clear
interfaces between standardized and flexible components.

With this modular approach, teams can use paved path templates while having the
flexibility to adapt them to their needs. A team building a high-throughput service
might customize the scaling configuration and add specialized performance metrics,
while a team building a security-sensitive service might add extra authentication
middleware and audit logging.

The role of governance in this balance is crucial. Effective platforms use PaC and
automated validation to create guardrails that prevent serious issues while allowing
deviation within safe boundaries. For instance, instead of mandating every technol-
ogy choice, you might implement automated checks that verify that key requirements
are met, regardless of the specific implementation. This approach allows teams to
innovate while ensuring essential standards are maintained.
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Platform Measurement and Evolution

With a platform strategy in place, the next step is to measure its effectiveness
and drive its adoption. This section explores how to define and track metrics to
demonstrate platform value and then examines strategies for encouraging developer
engagement and platform utilization.

Measuring Platform Success

You can’t improve what you don’t measure. Think of your platform as a product with
both technical and business KPIs. Indicators should help you assess value to both
developers and the business. Key metric categories include:

Developer productivity
How much faster can teams ship features using the platform? Track metrics like
deployment frequency, lead time for changes, and MTTR. Use metrics to get a
better understanding of time spent writing code versus managing infrastructure.

Platform adoption
Are teams actually using the platform? Metrics should measure both breadth (the
number of active users, projects leveraging the platform, and the percentage of
new projects onboarded) and depth (how extensively teams leverage available
features). Usage patterns here can help identify both successful offerings and
potential friction points.

Operational efficiency
How much has the platform reduced costs or improved operational perfor-
mance? Look at infrastructure costs, incident rates, and support ticket volume.

Business impact
Ultimately, does the platform contribute to business goals? Metrics should con-
nect platform investments to organizational outcomes such as faster time-to-
market, increased customer satisfaction, or improved product quality.

We track platform performance and value creation to validate continuous improve-
ment and guide platform initiatives. Next, we'll explore strategies to encourage initial
platform adoption and facilitate platform evolution to unlock further value.

Driving Platform Adoption

Armed with a clear vision for our platform informed by understanding of our audi-
ence’s most acute pain points, our next challenge lies in driving adoption of our
platform. A well-executed adoption strategy combines careful capability selection,
seamless access, and proactive engagement.
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A minimum viable platform (MVP) approach is one that will help drive early adop-
tion. Instead of trying to build everything at once, focus platform work on delivering
a small set of high-value, low-effort capabilities that address the most pressing pain
points for development teams. These initial wins build credibility and demonstrate
our platform’s potential, making it easier to secure buy-in and resources for future
expansion. Based on the understanding we've gained about our audience, consider
the tasks that consume the most developer time or cause the most friction. By
tackling these challenges first, we can quickly show tangible benefits and generate
excitement around the platform.

Finally, if you are a platform team you must actively market your capabilities. Build-
ing a great platform is only half the battle; you also need to convince developers
to use it. Consider developer education programs, technical showcases, and clear
communication of the platform benefits and road map. Host workshops and training
sessions to teach developers how to use the platform effectively. Showcase successful
use cases and highlight the positive impact the platform has had on other teams.
Maintain a clear road map and communicate upcoming features and improvements
to build excitement and encourage adoption. By actively engaging with the developer
community, platform teams can foster a culture of adoption and ensure the platform
becomes an integral part of the development workflow.

Leveraging Internal Developer Portals for Platform Success

Internal developer portals (IDPs) serve as the interface between development teams
and your platform capabilities. Portals make the platform easy to discover and use by
bringing everything together in one place. The most effective portals include service
discovery, contextual documentation, and self-service capabilities, making them the
natural starting point for any developer interaction with the platform.

Core portal components

A well-designed IDP typically includes:

Software catalog
A centralized registry of all services, APIs, and components with ownership
information and dependency mapping

Self-service workflows
Automated processes for common tasks like creating new services or provision-
ing environments using “golden path” templates

Documentation hub
Contextual, searchable technical resources that appear when needed

176 | Chapter 10: A Platform Engineering Approach to Modern DevOps



Scorecards
Metrics showing service maturity, compliance status, and adoption of best
practices

Al-enhanced developer experience

Modern IDPs increasingly leverage the following AI capabilities to reduce cognitive
load and accelerate platform adoption:

Natural language interfaces
Allow developers to find resources and execute workflows using conversational
queries.

Intelligent recommendations
Suggest relevant documentation, services, and configuration options based on
the developer’s context and history.

Automated troubleshooting
Analyze error patterns and suggest potential solutions when developers
encounter issues.

Predictive assistance
Anticipate developer needs based on their current activities and proactively offer
relevant resources.

These AI capabilities transform the portal from a passive resource to an active
assistant that guides developers through complex operations without requiring them
to become experts.

Building an effective portal

For sustainable success, treat your IDP as a product with dedicated resources
for its ongoing development. Measure its effectiveness through metrics like devel-
oper adoption rates, time saved through self-service workflows, and new developer
time-to-productivity.

IDPs have recently become available off the shelf. Backstage, developed initially at
Spotify, was open sourced and donated to the Cloud Native Computing Foundation
in 2020. Commercial offerings to simplify Backstage adoption and management
have emerged from vendors including Roadie, Spotify, and Harness. Non-Backstage
commercial IDPs are also available, such as Atlassian’s Compass.

A well-designed IDP reduces cognitive load, accelerates onboarding, and makes plat-
form adoption the path of least resistance, transforming how developers experience
your entire platform offering.
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Sustainable Platform Evolution

With initial adoption underway, the next step is ensuring the platform’s sustainable
evolution. This hinges on balancing developer empowerment with platform integrity,
achieved through PaC and automation, continuous feedback loops, and continual
investment in reliability and scalability. Leveraging PaC that enables “trust but verify”
automation is one way to achieve this balance. By encoding organizational standards
into programmable policies (using tools like OPA or custom enforcement engines),
your platform team can delegate control while maintaining compliance.

Policy and Policy as Code can give some control to development teams to reduce bot-
tlenecks and foster agility without sacrificing standardization. For example, policies
can define acceptable resource usage limits, enforce security best practices, or ensure
compliance with organizational standards. Developers can operate within predefined
boundaries, knowing that their actions won't compromise the stability or security
of the platform. Crucially, policies can also be used to signal upcoming changes,
such as deprecating older systems or templates. By issuing warnings well in advance,
developers have time to migrate to newer, supported options, ensuring a smooth
transition and minimizing disruption when the older systems are eventually retired.

Al technology is evolving rapidly, creating both opportunities and challenges for
platform teams. It’s crucial to establish a systematic approach to evaluating emerg-
ing Al tools before incorporating them into your platform. Create a sandbox envi-
ronment where promising technologies can be tested against real-world scenarios
using your organization’s data. Develop clear criteria for graduating Al capabilities
from experimental to production-ready, including considerations around reliability,
explainability, and governance. This approach allows your platform to benefit from
AT advancements while managing the risks of rapidly evolving technology.

Platform evolution must be guided by empirical evidence rather than assumptions.
Your team must make a regular practice of reviewing your “platform intelligence tri-
angle”—the combination of platform usage metrics, support requests, and developer
feedback. Use these to guide road map development and identify developer needs
and pain points. Are certain features underutilized? Are there common support
requests that indicate areas for improvement? For instance, if you notice increasing
support tickets around a particular service coupled with declining usage patterns, it
might indicate a reliability issue that requires immediate attention. Regular platform
health checks should examine both technical metrics (error rates, response times)
and adoption metrics (feature usage, team onboarding success).

Finally, consistent investment in platform reliability and scalability is nonnegotia-
ble—a single significant outage can erase months of trust-building. As platform
adoption grows—and platform load increases—investment in reliability engineering
becomes more critical. Developers need to trust that the platform will be available
when they need it and that it will perform consistently. This includes implementing
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robust observability, establishing clear incident management processes, and main-
taining transparent communication channels with development teams.

A Practical Example: Platform Engineering in Action

As an example, consider a financial services organization with 1,400 developers
spread across 80 product teams facing significant delivery challenges. An audit
revealed inconsistent security practices, and the CTO was concerned about both
velocity and compliance risks. Meanwhile, internal metrics showed developers spend-
ing nearly 45% of their time on noncoding activities—managing pipelines, configur-
ing environments, and addressing security and compliance requirements.

To address these challenges, the organization formed a dedicated platform team
consisting of six people: a platform engineering lead, a senior developer with CI/CD
expertise, a security engineer, an operations engineer, a platform engineer with
Kubernetes expertise, and a technical product manager who would also handle
documentation.

Discovery and strategy development

The team began with an intensive discovery phase to understand both developer pain
points and compliance requirements. They implemented a structured immersion
program, embedding team members with representative product teams to observe
workflows and document challenges. This research revealed common pain points:

o Duplicated effort in maintaining separate CI/CD pipelines across teams
« Inconsistent security scanning implementation
« Manual environment provisioning creating delays and inconsistencies

o Poorly understood compliance requirements implemented differently across
teams

Simultaneously, the team engaged with governance stakeholders through working
sessions with the CISO’s team, enterprise architecture, compliance, and legal to
understand security controls, technical standards, audit requirements, and data han-
dling requirements.

Based on this research, the team developed a platform strategy with clear principles:

« Developer experience drives platform design—reducing cognitive load.
o Security and compliance are built in, not bolted on.
« Everything is measurable—focusing only on what delivers value.

o The platform is optional but compelling—solving real problems.
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The team deliberately focused their initial scope on a single high-impact capability:
secure CI/CD pipelines with embedded security controls.

Building the minimum viable platform

The team delivered their MVP within eight weeks: a template-driven pipeline system
with embedded security scanning. Key components included:

o Pipeline templates with best practices for different application types
o Preconfigured security scanning integrated directly into the pipeline
» Automated evidence collection for compliance requirements

« Self-service configuration through a simple YAML file

The team embedded required security controls directly into the pipeline templates,
with static analysis, dependency scanning, container scanning, and compliance
checks running automatically. Results fed into a centralized dashboard, while auto-
mated evidence collection simplified audit preparation.

With key checks automated, including required levels of code coverage, the change
management process was streamlined dramatically for application teams on the plat-
form. They were excited to be granted an exemption from going to the CAB.

Working closely with two pilot teams, the platform team refined their offering based
on weekly feedback. Documentation was developed alongside the code, with both
technical reference material and practical guides.

Within three months, the MVP showed impressive results with pilot teams:

o+ Deployment time reduced from five days to six hours.

« Security scanning coverage increased from 40% to 100%.

o Audit preparation time reduced from days to hours.

« Critical vulnerabilities discovered and remediated through automated scanning.
By the six-month mark, 15 teams (about 250 engineers) were using the secure

pipeline templates, and security incidents from these teams had dropped by 40%,
compared with nonadopting teams.

Expanding platform capabilities

Based on comprehensive telemetry and user feedback, the platform team identified
environment provisioning as their next target. They also recognized that with grow-
ing adoption, they needed a more scalable approach to onboarding and support.

Their next phase focused on two key capabilities:
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o An IDP that served as a single interface for all platform capabilities, including:
— A service catalog with automated discovery
— Self-service onboarding for secure pipelines
— Integrated documentation and guides
— Real-time visibility into pipeline status and security findings
o IaC templates for common application patterns that encoded best practices for:
— Secure network configuration
— Properly configured access controls
— Compliance-aligned logging and monitoring

— Resource limits and cost controls

These templates integrated with the IDP, allowing developers to provision compliant
environments with minimal effort.

The expanded platform dramatically increased adoption. Within six months:

o 45 teams (representing around 600 developers) were using the secure pipelines.

o 30 teams had adopted the IaC templates for environment provisioning.

o The platform handled over 2,000 deployments per month.

o Support requests per user had dropped by 70% due to self-service capabilities.
The platform team continued to operate with just six people despite serving hun-

dreds of developers, leveraging self-service capabilities and automation to scale their
impact.

Enterprise-wide adoption and business impact

To drive broader adoption, the platform team developed a multifaceted approach:

o Internal events showcasing capabilities and success stories

+ A “Platform Champions” program identifying advocates in each department
« Executive dashboards showing adoption metrics and business impact

o Training programs with both self-paced and instructor-led options

The CTO established incentives for adoption, with platform users receiving priority
for cloud resources and streamlined compliance reviews.

As platform adoption grew, governance approaches evolved. Instead of manual
reviews and documentation, security and compliance requirements were encoded
directly into the platform through:
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+ PaC frameworks that automatically enforced standards
o Built-in evidence collection that satisfied audit requirements
o Self-service exception processes for legitimate edge cases

« Automated compliance reporting from platform telemetry
By the 18-month mark, the platform had achieved significant results:

o 85% of development teams (representing around 1,200 developers) using the
platform.

o Developer productivity increased by 35%.

o+ Deployment frequency increased 6x across the organization.
» Mean time to recover from failures decreased by 70%.

« Security incidents reduced by 65% for platform users.

« Audit preparation time reduced by 90%.

o Time-to-market for new features reduced by 40%.

These improvements translated to tangible business outcomes: faster feature releases,
quicker responses to market changes, reduced downtime, and lower security and
compliance risks.

Ongoing improvements

Three years into the journey, the platform team continually evolved its offerings.
Their road map included Al-assisted development capabilities, advanced observabil-
ity tools, expanded security automation, and developer experience improvements
based on ongoing research.

The key lessons from this platform engineering journey included:

Product mindset is essential
Treating developers as customers drives better decisions.

Starting small builds credibility
Deliver one capability well before expanding.

Self-service is key to scale
Adopt an agile approach, delivering iteratively.

Metrics drive investment
Measure both technical outcomes and business impact.

Governance integration creates win-wins
The right tooling can turn compliance from a constraint into an accelerator.
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This example demonstrates how a small, focused platform team can drive significant
organizational transformation by systematically addressing developer needs while
streamlining governance requirements. By starting with high-impact capabilities,
measuring outcomes, and treating the platform as a product, the team achieved
remarkable scale, serving 1,400 developers with just six platform engineers.

Conclusion

As we wrap up our exploration of modern software delivery, one thing is clear: Al
isn’t just another tool in our DevOps toolkit; it's fundamentally changing how we
build and deliver software.

Throughout this book, we've seen how Al is impacting every stage of the software
lifecycle. From detecting code patterns in repositories to optimizing test selection,
from identifying security vulnerabilities to automating cloud cost optimization, Al
capabilities are rapidly becoming integral to modern delivery practices.

Platform engineering ties these elements together, creating a foundation where Al-
powered capabilities work in concert to accelerate delivery while maintaining gov-
ernance. By building developer platforms that abstract complexity and embed best
practices, teams can focus more on creating business value and less on the undifferenti-
ated heavy lifting that has traditionally consumed so much developer time.

At the time of writing, Al for developer coding assistants is more mature than Al for
many parts of software delivery. This promises to put new strains on DevOps teams
as innovation becomes increasingly constrained not on an organization’s ability to
generate code, but on its ability to validate and deliver those applications. Delivery
excellence, increasingly dependent on Al, will be a key factor in who will take full
advantage of advances in coding techniques and who will be frustrated.

Looking Forward

The shift to Al-native delivery practices is still in its early stages, but the direction is
unmistakable. Organizations that effectively integrate Al into their delivery pipelines
will gain significant advantages:

o Accelerated delivery cycles as Al eliminates bottlenecks and automates routine tasks

o Improved quality and security through Al-powered testing and vulnerability
detection

» Reduced operational costs via intelligent resource optimization and automated
remediation

» Enhanced developer experience as cognitive load shifts from operational con-
cerns to creative problem-solving

Conclusion | 183



In practice, this means deployment decisions will increasingly be made based on
sophisticated AI analysis rather than human judgment alone. Test strategies will adapt
dynamically to code changes instead of following rigid patterns. Infrastructure will
self-optimize based on application needs rather than requiring manual tuning.

Getting Started

If you're looking to implement these practices in your organization, we recommend a
pragmatic approach:

o Identify your most painful bottlenecks first. Where are your teams spending the
most time on low-value activities? These are your prime targets for AI-powered
automation.

o Start small and measure relentlessly. Implement focused improvements, validate
their impact, and use that success to drive further adoption.

o Build for your developers, not for the tools. Adopt a product mindset for your
delivery platform, ensuring it actually solves real problems for your teams.

« Embed governance, don’t bolt it on. Use your platform to make compliance and
security seamless parts of the development process, not afterthoughts.

The organizations that thrive in this new era won’t necessarily be those with the
largest engineering teams or the biggest budgets. Rather, they’ll be the ones that
most effectively harness Al to deliver better software, faster, while maintaining the
governance guardrails necessary for enterprise operation.

This won't happen overnight. Like any significant transformation, it requires com-
mitted leadership, continuous learning, and a willingness to challenge established
processes. But the rewards—measured in development velocity, product quality, and
ultimately business outcomes—make this journey worth undertaking.

The future of software delivery is intelligent, automated, and built for the needs of the
human developers who remain at its core. We hope this book has provided you with
both the technical understanding and the practical strategies to begin building that
future in your organization today.
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